Journal article
+ 1 other files
Misfit layer compounds: a platform for heavily doped 2D transition metal dichalcogenides
-
Leriche, Raphaël T.
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
Palacio‐Morales, Alexandra
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France - Laboratoire de Physique des Solides Université Paris‐Saclay and CNRS UMR8502 Orsay 91405 France
-
Campetella, Marco
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
Tresca, Cesare
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
Sasaki, Shunsuke
Institut des Matériaux Jean Rouxel Université de Nantes and CNRS‐UMR 6502 Nantes 44322 France
-
Brun, Christophe
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
Debontridder, François
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
David, Pascal
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
-
Arfaoui, Imad
Monaris, Sorbonne Université and CNRS‐UMR 8233 Paris 75005 France
-
Šofranko, Ondrej
Centre of Low Temperature Physics Faculty of Science P. J. Safarik University Kosice SK‐04001 Slovakia - Centre of Low Temperature Physics Institute of Experimental Physics Slovak Academy of Sciences Kosice SK‐04001 Slovakia
-
Samuely, Tomas
Centre of Low Temperature Physics Faculty of Science P. J. Safarik University Kosice SK‐04001 Slovakia
-
Kremer, Geoffroy
Département de Physique and Fribourg Center for Nanomaterials Université de Fribourg Fribourg CH‐1700 Switzerland
-
Monney, Claude
Département de Physique and Fribourg Center for Nanomaterials Université de Fribourg Fribourg CH‐1700 Switzerland
-
Jaouen, Thomas
Département de Physique and Fribourg Center for Nanomaterials Université de Fribourg Fribourg CH‐1700 Switzerland - Univ Rennes CNRS IPR (Institut de Physique de Rennes) ‐ UMR 6251 Rennes F‐35000 France
-
Cario, Laurent
Institut des Matériaux Jean Rouxel Université de Nantes and CNRS‐UMR 6502 Nantes 44322 France
-
Calandra, Matteo
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France - Department of Physics University of Trento Provo 38123 Italy - Graphene Labs Fondazione Istituto Italiano di Tecnologia Via Morego Genova I‐16163 Italy
-
Cren, Tristan
Institut des Nano, Sciences de Paris Sorbonne Université and CNRS‐UMR 7588 Paris 75005 France
Show more…
Published in:
- Advanced Functional Materials. - 2020, p. 2007706
English
Transition metal dichalcogenides (TMDs) display a rich variety of instabilities such as spin and charge orders, Ising superconductivity, and topological properties. Their physical properties can be controlled by doping in electric double‐layer field‐effect transistors (FET). However, for the case of single layer NbSe2, FET doping is limited to ≈1 × 1014 cm−2, while a somewhat larger charge injection can be obtained via deposition of K atoms. Here, by performing angle‐resolved photoemission spectroscopy, scanning tunneling microscopy, quasiparticle interference measurements, and first‐principles calculations it is shown that a misfit compound formed by sandwiching NbSe2 and LaSe layers behaves as a NbSe2 single layer with a rigid doping of 0.55–0.6 electrons per Nb atom or ≈6 × 1014 cm−2. Due to this huge doping, the 3 × 3 charge density wave is replaced by a 2 × 2 order with very short coherence length. As a tremendous number of different misfit compounds can be obtained by sandwiching TMDs layers with rock salt or other layers, this work paves the way to the exploration of heavily doped 2D TMDs over an unprecedented wide range of doping.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/308894
Other files
Statistics
Document views: 63
File downloads:
- mon_mlc.pdf: 124
- mon_mlc_sm.pdf: 68