A periodic map for linear barycentric rational trigonometric interpolation
-
Berrut, Jean-Paul
Department of Mathematics, University of Fribourg, Pérolles, Fribourg 1700, Switzerland
-
Elefante, Giacomo
Department of Mathematics, University of Fribourg, Pérolles, Fribourg 1700, Switzerland
Published in:
- Applied Mathematics and Computation. - 2020, vol. 371, p. 124924
English
Consider the set of equidistant nodes in [0, 2π),θk:=k·2πn,k=0,⋯,n−1.For an arbitrary 2π–periodic function f(θ), the barycentric formula for the corresponding trigonometric interpolant between the θk’s isT[f](θ)=∑k=0n−1(−1)kcst(θ−θk2)f(θk)∑k=0n−1(−1)kcst(θ−θk2),where cst(·):=ctg(·) if the number of nodes n is even, and cst(·):=csc(·) if n is odd. Baltensperger [3] has shown that the corresponding barycentric rational trigonometric interpolant given by the right-hand side of the above equation for arbitrary nodes introduced in [9] converges exponentially toward f when the nodes are the images of the θk’s under a periodic conformal map. In the present work, we introduce a simple periodic conformal map which accumulates nodes in the neighborhood of an arbitrarily located front, as well as its extension to several fronts. Despite its simplicity, this map allows for a very accurate approximation of smooth periodic functions with steep gradients.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/308513
Statistics
Document views: 30
File downloads: