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a b s t r a c t 

Consider the set of equidistant nodes in [0, 2 π ), 

θk := k · 2 π
n 

, k = 0 , . . . , n − 1 . 

For an arbitrary 2 π–periodic function f ( θ ), the barycentric formula for the corresponding 

trigonometric interpolant between the θ k ’s is 

T [ f ](θ ) = 

∑ n −1 
k =0 (−1) k cst ( θ−θk 

2 
) f (θk ) ∑ n −1 

k =0 (−1) k cst ( θ−θk 
2 

)
,

where cst (·) := ctg (·) if the number of nodes n is even, and cst (·) := csc (·) if n is odd. 
Baltensperger [3] has shown that the corresponding barycentric rational trigonometric inter- 

polant given by the right-hand side of the above equation for arbitrary nodes introduced in

[9] converges exponentially toward f when the nodes are the images of the θ k ’s under a pe- 

riodic conformal map. In the present work, we introduce a simple periodic conformal map

which accumulates nodes in the neighborhood of an arbitrarily located front, as well as

its extension to several fronts. Despite its simplicity, this map allows for a very accurate

approximation of smooth periodic functions with steep gradients.

1. Introduction

The polynomial interpolating between Chebyshev nodes of the second kind is a very efficient way of approximating 

smooth functions on a finite interval. It converges exponentially rapidly for analytic functions, faster than algebraically (spec- 

trally) for infinitely smooth ones and with an order corresponding to that of differentiability for several times differentiable 

functions. The MATLAB–based software Chebfun as well as some (pseudo)spectral methods for partial differential equations 

are based on it [23,24] . 

The barycentric formula for its evaluation reads 

P n (x ) = 

∑ n ′′ 
k =0 

(−1) k

x −x k 
F (x k ) ∑ n ′′ 

k =0 
(−1) k

x −x k 

, (1) 
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where the x k are the interpolation points (nodes), F is the interpolated function and the double prime means that the first 

and the last term of the sum are multiplied by 1 2 . For a description of the barycentric representation, the reader may consult 

[13] . 

In [9] , the first author has suggested the use of (1) also when the interpolation points x k are not the Chebyshev ones. 

The result is a rational function with no poles on R [9] , which we shall denote by r n [ f ]. Baltensperger et al. [6] have shown 

that r n [ f ] retains the exponential convergence for analytic functions, when the x k ’s are images of the Chebyshev nodes under 

a conformal map. This may be used to improve the stability of pseudospectral methods in time evolution problems [5] and 

to diminish the number of iterations in the solution of the systems of equations arising from pseudospectral methods for 

stationary problems [10] . But it may also be used to concentrate the nodes in the vicinity of fronts in order to improve 

accuracy [11] , a property which has led to several applications, starting with the solution of stationary problems with fronts 

in [12] and of time evolution problems in [22] . The authors of the latter paper have introduced a map which moves (known) 

singularities of the function away from their domain. This permitted the accurate solution of explosion problems in [22] and 

of infiltration problems in [14] , for instance. 

The work [11] makes use of the Bayliss–Turkel map [7] , which involves two parameters for describing the front, one for 

its location, the other for its strength, and optimizes the parameters as functions of f , rendering r n [ f ] nonlinear in f , with 

spectacular results; see [4] for a close alternative. [11] also presents a method for extending the map to functions with 

several fronts, which has been applied recently [18,20] and will be used in the present paper as well. 

Letting x = cos θ, x k = cos θk in (1) shows that the latter is the cosine polynomial interpolant of the 2 π–periodic even 

function F (cos φ) [8] between the equidistant nodes 

θk := k · 2 π
n 

, k = 0 , . . . , n − 1 . (2) 

For an arbitrary 2 π–periodic function f ( θ ), the corresponding trigonometric interpolant between the equidistant θ k from 

(2) reads [16] 

T [ f ](θ ) = 

∑ n −1 
k =0 (−1) k cst 

(
θ−θk 
2 

)
f (θk ) ∑ n −1 

k =0 (−1) k cst 
(

θ−θk 
2 

) , (3) 

where cst (·) = ctg (·) if the number of nodes n is even, and cst (·) = csc (·) if n is odd. 
An extension of Chebfun to periodic functions using trigonometric interpolation has recently been constructed by Wright 

and al. [25] . 

In [9] , the first author has suggested to use T [ f ]( φ) as in formula (3) for arbitrary nodes φk with 

0 ≤ φ0 < φ1 < · · · < · · · < φn −1 < 2 π (4) 

and proved that the corresponding linear rational trigonometric interpolant does not have any poles on [0, 2 π ) for any set 

of nodes satisfying (4) . 

Baltensperger [3] has later shown that, similarly to the rational interpolant (1), (3) converges exponentially toward f 

when the nodes are the images of the θ k ’s from (2) under a periodic conformal map. Baltensperger tested his results merely 

with a periodic version of the Tal–Ezer map, which improves the accuracy only for functions with a front in the center of 

the interval. 

In his thesis [21] , Tee has constructed a periodic map which pushes (known) poles of f away from the domain [0, 2 π ), 

but involves special functions. 

In the present work, we introduce a simple periodic conformal map which accumulates nodes in the neighborhood of an 

arbitrarily located front, as well as its extension to several fronts. Despite its simplicity, this map allows for a very accurate 

approximation of smooth periodic functions with steep gradients. 

2. Exponential convergence of the interpolant 

As mentioned before, Baltensperger [3] was able to extend the theorem for the exponential convergence of r n [ f ] to the 

case of trigonometric interpolation. His result reads as follows. 

Theorem 1. Let g be a complex valued function with period 2 π such that g([0 , 2 π ]) = [0 , 2 π ] and such that 

w (φ, ψ) := 

cst ((g(φ) − g(ψ)) / 2) 

cst ( ( φ − ψ) / 2) 

is bounded and analytic in S a 1 × S a 1 , where S a 1 := { ζ : | Im ζ | ≤ a 1 } (a 1 > 0 ). Let f be a function to be approximated such that 

f ◦g is a complex-valued function with period 2 π . 

Let T [ f ]( φ) := T [ f ◦g ]( θ ), φ = g(θ ) , be the rational function (3) interpolating f between the transformed points φk = g(θk ) with 

θ k as in (2) . Then, for every φ ∈ [0, 2 π ], we have the following: 

(i) If f ◦ g has simple jump discontinuities in the p th derivative, then 

| f (φ) − T [ f ](φ) | = O(n −p ) ;
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(ii) If f ◦ g is analytic in a strip S a 2 := { ζ : | Im ζ | ≤ a 2 } , where a 1 ≥ a 2 ≥0 and | f ( φ)| ≤M, then 

| f (φ) − T [ f ](φ) | = O(ρ−n ) , with ρ := e a 2 . 

One can therefore use conformal maps to move equidistant nodes and still retain rapid convergence. 

One idea is to use the maps for polynomial interpolation appropriately modified in order to make them periodic [3] . For 

instance, the map by Kosloff and Tal-Ezer [19] 

g(x ) = arcsin (αx ) / arcsin (α) , 0 < α < 1 , (5) 

becomes [3] 

g(θ ) = 2 arccos 

(
arcsin (α cos (θ/ 2)) 

arcsin (α) 

)
, 0 < α < 1 , (6) 

while the one of Bayliss and Turkel [7] 

g(x ) = β + 

1 

α
tan (λ(x − μ)) (7) 

becomes 

g(θ ) = 2 arccos 

(
β + 

1 

α
tan (λ( cos (θ/ 2) − μ)) 

)
, (8) 

with the following parameters μ and λ: 

λ = 

γ + η

2 
, μ = 

γ − η

γ + η
, γ = arctan (α(1 + β)) , η = arctan (α(1 − β)) . 

We shall use these two maps for comparison in the numerical examples; for other maps for the non–periodic case, see, 

e.g. [2,18,22] . 

3. A periodic conformal map 

We shall now introduce the conformal maps which constitute the central part of this work. For z ∈ C , consider the 

Möbius transformation [15] 

h a (z) = 

z + a 

1 + z ̄a 
, with | a | < 1 . (9) 

h a maps the unit disk onto itself in such a way that the image of the point −a is mapped to 0. Recall that, since h a is 

a Möbius transformation, it maps (arcs of) circles to (arcs of) circles. Notice also that the inverse function of h a is h −a . 

Moreover, h a maps connected subsets of C conformally and leaves the unit circle E invariant, i.e., maps it onto itself. The 

image of the boundary point e i θ is 

e iψ(θ ) := h a (e 
iθ ) = 

e iθ + a 

1 + e iθ ā 
. (10) 

ψ( θ ) is the so–called boundary correspondence function of the map h a from the unit disk onto itself [17] ; it will be the basis 

of our changes of variable. 

Let us consider a real; if we write e iθ = x + iy, we have x 2 + y 2 = 1 and we can write e i ψ( θ ) as 

e iθ + a 

1 + e iθa 
= 

x + iy + a 

1 + (x + iy ) a 
= 

x + 2 a + a 2 x 

1 + 2 ax + a 2 
+ i 

y − a 2 y 

1 + 2 ax + a 2 
= u a (x, y ) + i v a (x, y ) . 

The partial derivative of u a ( x, y ) with respect to a is 

∂u a (x, y ) 

∂a 
= 

(x 2 − 1)(2 a 2 − 2) 

(1 + 2 ax + a 2 ) 2 
= − y 2 (2 a 2 − 2) 

(1 + 2 ax + a 2 ) 2 

and is positive when 0 < a < 1, which means that all points of E but ±1 move to the right. Therefore, many elements of the 

set { e i θ}, where θ := { θk = 

2 kπ
n , k = 0 , . . . , n − 1 } is the set of the equidistant nodes (2) , will cluster around 1 (see Fig. 1 ). 

When we consider a complex value of a such as a = ρe iϕ , ϕ ∈ (0, 2 π ), many images of { e i θ} will cluster around e i ϕ , 

since this general case is the rotation of the previous case by the angle ϕ. So, if we restrict ourselves to the boundary 

correspondence function, the arguments of the mapped points h a ( e i θ) will cluster around ϕ. 
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Fig. 1. Uniform points on the circle and their radii mapped with h a with various values of a = ρ . 

3.1. A map for a single front 

Our map g , then, will be the boundary correspondence function, which we obtain by taking the logarithm with value in 

[0, 2 π ) of (10) : 

g a (θ ) = −i log 

(
e iθ + a 

1 + e iθ ā 

)
(11) 

(since the principal value of the logarithm lies in (−π, π ] , we must choose another branch). 

In general we have g a (0) � = 0, in which case, since the function is periodic, we consider the function ̃  g a (φ) := g a (φ + γ ) 

for a constant γ such that ̃  g a (0) = 0 . 

We can now use these new points to interpolate a function with the barycentric trigonometric interpolant and take 

advantage of Theorem 1 . In the present work, we wish to construct an exponentially convergent approximant of a function 

f of which we know that it has a front at θ = ϕ. We do this by choosing a ρ in a = ρe iϕ such that the interpolation points 

θ cluster around ϕ and applying the barycentric rational interpolant (3) for φ := g a ( θ ) instead of θ . 

3.2. Multiple fronts 

In case the function f has several fronts, we need to construct a conformal map that accumulates the points around all the 

locations of the fronts. As proposed in [12] , we consider the inverse functions g −1 
q with parameters ρq , ϕq , for q = 1 , . . . , J, 

one g q for each front, and we define the map ḡ −1 as 

ḡ −1 (φ) = 

1 

J 

J ∑ 

q =1 

g −1 
q (φ) ; (12) 

ḡ will cluster the nodes around the various fronts. Since the latter lie at the (known) points ϕq , we want to choose ρq such 

that a q = ρq e 
iϕ q are adequate parameters in ḡ (θ ) . 
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We have 

1 

J 

J ∑ 

q =1 

−i log 

(
e iφ − a q 

1 − e iφ ā k 

)
= θ

J ∏ 

k =1 

(
e iφ − a k 
1 − e iφ ā k 

)
= e Jiθ , (13) 

or 

J ∏ 

k =1 

(
e iφ − a k 

)
− e Jiθ

J ∏ 

k =1 

(
1 − e iφ ā k 

)
= 0 . (14) 

Setting z := e i φ , we have to find the zero of a polynomial of degree less than or equal to J for every value of φ at which 

we need that of θ , in particular for each of the n interpolation points. 
However, in the case of two fronts we can compute the inverse function analytically. Indeed, let us consider a = ρ1 e 

iϕ 1 

and b = ρ2 e 
iϕ 2 , the parameters of the functions g −1 

1 
and g −1 

2 
, respectively. (13) becomes (

e iφ − a 

1 − e iφa 

)(
e iφ − b 

1 − e iφb 

)
= e 2 iθ

or (
e iφ − a 

)(
e iφ − b 

)
1 + e 2 iφa b − e iφ

(
a + b 

) = e 2 iθ , 

which leads to the equation 

e 2 iφ
(
1 − e 2 iθ ā ̄b 

)
+ e iφ(e 2 iθ

(
ā + ̄b ) − (a + b) 

)
+ ab − e 2 iθ = 0 (15) 

for φ. Setting z := e i φ , this turns into 

z 2 
(
1 −e 2 iθ ā ̄b 

)
+ z 

(
e 2 iθ ( ̄a + ̄b ) − (a + b) 

)
+ ab − e 2 iθ

= z 2 
(
e −iθ − e iθ ā ̄b 

)
+ z 

(
e iθ ( ̄a + ̄b ) − e −iθ (a + b) 

)
+ e −iθab − e iθ

= z 2 
(
e −iθ − e iθ ā ̄b 

)
− 2 iz Im 

(
e −iθ (a + b) 

)
+ e −iθab − e iθ = 0 . 

The reduced discriminant of this second degree equation for z is 

�

4 
= 

(
i Im 

(
e −iθ (a + b) 

))
2 + 

(
e −iθ − e iθ ā ̄b 

)(
e iθ − e −iθab 

)
= 

∣∣e iθ − e −iθab 
∣∣2 − Im 

(
e −iθ (a + b) 

)
2 

and the solutions are 

z 1 , 2 (θ ) = 

i Im 

(
e −iθ (a + b) 

)
± ( �

4 
) 1 / 2 

e −iθ − e iθ ā ̄b 
. 

But 

z 1 (θ + π) = 

−i Im 

(
e −iθ (a + b) 

)
+ ( �

4 
) 1 / 2 

−e −iθ + e iθ ā ̄b 
= 

i Im 

(
e −iθ (a + b) 

)
− ( �

4 
) 1 / 2 

e −iθ − e iθ ā ̄b 
= z 2 (θ ) , 

so that the solution is unique up to a translation; translating it to have the image of 0 in 0, we have 

φ = −i log 
(
z 1 (θ ) 

)
. (16) 

One could also obtain analytical maps for the cases of three and four fronts, but this requires the use of more involved 

formulas such as that of Cardano for the third degree equation and even more complicated ones for the fourth degree 

equation; moreover, a stable implementation of such formulas requires care. 

4. Numerical examples 

4.1. One front function 

We have first considered a function similar to that of Example 1 in [11] , but modified it in order to make it periodic, 

f 1 (θ ) = e 1 / ( sin (θ+ π)+1 . 5) + cos (4( sin (θ + π) + 0 . 5)) + 

erf (δ( sin (θ + π) + 1)) 

erf (δ) 
, 
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Fig. 2. Left: an example with the function f 1 ; Right: various point sets. 

Table 1 

Error with the function f 1 with ε = 10 4 . 

n Equi KT BT BRT 

10 5.7201e-01 5.7295e-01 (0.05) 3.7049e-01 (3.05) 4.5603e-01 (0.04) 

20 4.3166e-01 4.3332e-01 (0.05) 5.0872e-01 (11.30) 3.5469e-02 (0.40) 

40 6.0408e-02 5.0592e-02 (0.99) 6.0059e-02 (2.05) 2.0856e-03 (0.46) 

80 4.9557e-03 5.0356e-03 (0.05) 1.3034e-02 (2.05) 5.8500e-07 (0.51) 

160 4.5164e-05 4.2683e-05 (0.86) 3.1541e-03 (2.05) 1.9540e-14 (0.54) 

320 1.1680e-10 1.1921e-10 (0.47) 7.8051e-04 (2.05) 1.7764e-14 (0.62) 

Table 2 

Error with the function f 1 with ε = 10 6 . 

n Equi KT BT BRT 

15 9.6326e-01 5.9939e-01 (0.92) 4.8577e-01 (3.60) 4.6128e-01 (0.52) 

30 9.9971e-01 5.1234e-01 (0.59) 4.2361e-01 (3.05) 2.0320e-01 (0.56) 

60 4.7472e-01 4.6612e-01 (0.94) 5.7724e-02 (3.05) 3.9628e-03 (0.63) 

120 8.5163e-02 7.9048e-02 (0.94) 9.1171e-03 (2.75) 5.2002e-06 (0.68) 

240 9.2787e-03 8.0863e-03 (0.94) 1.4085e-03 (2.05) 1.2257e-13 (0.70) 

480 6.2903e-05 5.4821e-05 (0.20) 3.4604e-04 (2.05) 4.1744e-14 (0.51) 

with δ = 

√ 

0 . 5 ε for a parameter ε which characterizes the steepness of f 1 . Here we have computed with the two cases 

ε = 10 4 and ε = 10 6 . The front of this function is in θ = 

π
2 , as may be seen in Fig. 2 . 

To estimate the error we considered 20 0 0 uniformly spaced points in [0, 2 π ] and we computed the maximum difference 

between the interpolant and the function in these points. 

In Tables 1 and 2 we made a comparison using various kinds of points. The first set of points were n equidistant points 

in [0, 2 π ). We used the map (6) derived from that of Kosloff and Tal-Ezer (KT in the table) and that of Bayliss and Turkel 

(8) (BT in the table): as parameter α we chose the best values (written in parentheses in the tables) through a trial and error 

method within the sets [0.05: 0.01: 0.99] and [2.05: 0.05: 15], respectively; as parameter β in Bayliss and Turkel we took 

the value for which the map clusters the points at the front π /2, i.e., β = 1 / 
√ 

2 . Since in [7,11] the results did not noticably 

depend on a perturbation of the parameter β about the location of the front, we refrained from trying other values. For the 

last column we used the map (11) presented above (BRT—for “barycentric rational trigonometric”—in the tables), where we 

chose the best ρ within the set [0: 0.01: 0.99]. (One could go further by estimating an optimal ρ , in the spirit of [7] , or 

numerically optimize it, as in [11] , but our aim here is only to demonstrate the effectiveness of the proposed map in some 

situations.) For the same reason as for β above, we fixed ρ as the location of the front. 

The approximate squaring of the error when N is doubled reflects the exponential decay of the error predicted by 

Theorem 1 . 

The reason why the map (8) does not lead to exponential convergence is that its construction does not provide con- 

formality. Indeed, g ′ (0) = 0 in view of the factor sin ( θ /2) in the inner derivative; and an analytic function with vanishing 

derivative is not conformal [1, p. 133] . 
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Fig. 3. The two test functions. 

Table 3 

Error with the function f 2 . 

n Equi BT BRT 

60 4.7774e-01 3.6941e-02 (13.3) 2.1843e-02 (0.77) 

120 8.6081e-02 5.3467e-03 (12.7) 9.8636e-05 (0.79) 

240 9.3970e-03 5.7084e-04 (6.00) 1.5925e-09 (0.79) 

480 6.3819e-05 2.7993e-05 (2.05) 6.6613e-14 (0.74) 

Table 4 

Error with the function f 3 . 

n Equi BT BRT 

35 1.1156e + 00 3.0810e-01 (12.35) 1.9638e-02 (0.90) 

70 7.3624e-01 1.0701e-01 (13.70) 1.0129e-03 (0.87) 

140 1.9318e-01 8.6162e-03 (14.65) 2.0570e-06 (0.86) 

280 2.2589e-02 2.1048e-04 (10.10) 1.9059e-12 (0.85) 

560 2.8214e-04 3.0953e-05 (2.80) 9.7700e-15 (0.89) 

4.2. Two fronts function 

As an example of a function with two fronts we have considered a modification of f 1 : 

f 2 (θ ) = e 1 / ( sin (θ+ π2 )+1 . 6) + cos 

(
π

(
sin 

(
θ + 

π

2 

)
+ 0 . 5 

))
+ 

erf (δ( sin (θ + 

π
3 
) + 1)) 

erf (δ) 
+ 

erf (δ( sin (θ + 

6 π
5 

) + 1)) 

erf (δ) 
, 

with δ = 

√ 

0 . 5 ε, and ε = 10 6 ; this function has one front in θ1 = 

7 
6 π and another in θ2 = 

3 
10 π . 

The function 

f 3 (θ ) = tanh 

(
50 cos 

(
θ + 

π

3 

))
, 

has two fronts as well, respectively in θ1 = 

π
6 and θ2 = 

7 
6 π . 

The test functions f 2 and f 3 are plotted in Fig. 3 . 

As for f 1 , we performed a trial an error search for the parameter of the map (16) , in the same set as for f 1 and setting 

the same ρ for both fronts, as the same parameter δ is used in the two erf–functions in f 2 and the same value 50 multiplies 

the two zero values of the cosine in f 3 . 

In Tables 3 and 4 , we display a comparison with the equidistant nodes and with the periodic Bayliss and Turkel map 

with the same value of the parameter α for the two fronts, chosen with a trial and error in the same set as for f 1 . Again, 

the β–values are the cosines of half the abscissae of the fronts. Since we do not have an explicit formula for the inverse of 

this map with multiple fronts, we approximated the φk by means of the function fsolve in MATLAB, i.e., as the values which 

solve the equation ḡ −1 (φ) = θ, where ḡ −1 is the function in (12) with J = 2 and g −1 
q the inverse of the Bayliss and Turkel 

map. 
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5. Conclusions 

In this work we have introduced a periodic conformal map for shifting nodes on the interval of interpolation with the 

purpose of approximating periodic functions with fronts. Our experiments demonstrate that the suggested map indeed leads 

to exponentially convergent barycentric rational trigonometric interpolants, as to be expected from the theorem by Bal- 

tensperger. Such an exponential convergence is faster than any power of 1/ n , in other words spectral. In the case of two 

fronts we have an analytical formula and do not need to numerically solve an equation for every point, as with other maps 

suggested in the literature. In many cases this leads to an enormous saving of computation. When more than two fronts are 

present, we merely have to solve a polynomial equation of corresponding degree for every node. 
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