On right-angled polygons in hyperbolic space
-
Dotti, Edoardo
Département de mathématiques, Université de Fribourg, Switzerland
-
Drewitz, Simon T.
Département de mathématiques, Université de Fribourg, Switzerland
Published in:
- Geometriae Dedicata. - 2019, vol. 200, no. 1, p. 45–59
English
We study oriented right-angled polygons in hyperbolic spaces of arbitrary dimensions, that is, finite sequences (S0,S1,…,Sp−1) of oriented geodesics in the hyperbolic space HHn+2 such that consecutive sides are orthogonal. It was previously shown by Delgove and Retailleau (Ann Fac Sci Toulouse Math 23(5):1049–1061, 2014. https://doi.org/10.5802/afst.1435) that three quaternionic parameters define a right- angled hexagon in the 5-dimensional hyperbolic space. We generalise this method to right-angled polygons with an arbitrary number of sides p≥5 in a hyperbolic space of arbitrary dimension.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/307988
Statistics
Document views: 21
File downloads: