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Abstract We study oriented right-angled polygons in hyperbolic spaces of arbitrary dimen-
sions, that is, finite sequences (S0, S1, . . . , Sp−1) of oriented geodesics in the hyperbolic
space Hn+2 such that consecutive sides are orthogonal. It was previously shown by Del-
gove and Retailleau (Ann Fac Sci Toulouse Math 23(5):1049–1061, 2014. https://doi.org/
10.5802/afst.1435) that three quaternionic parameters define a right-angled hexagon in the
5-dimensional hyperbolic space. We generalise this method to right-angled polygons with
an arbitrary number of sides p ≥ 5 in a hyperbolic space of arbitrary dimension.
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1 Introduction

For n ≥ 0, let Hn+2 denote the real hyperbolic (n + 2)-space. The boundary of this space
can be described with Clifford vectors. These are special elements of the Clifford algebra Cn ,
which is the unitary associative algebra generated by n elements i1, . . . , in such that i j il =
−il i j , i2l = −1 for l �= j . The group of orientation preserving isometries Isom+(Hn+2) of
the hyperbolic space Hn+2 can be expressed with Clifford matrices. These are 2×2 matrices
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with coefficients in the multiplicative group generated by Clifford vectors and with Ahlfors
determinant 1.
In this context, we describe hyperbolic right-angled polygons for which we mean right-

angled closed edge paths in n + 2 dimensions. We show how to construct a hyperbolic
right-angled polygon �p of p sides, p > 4, by prescribing a parameter set consisting of
p − 3 Clifford vectors in ∂ Hn+2. Such a construction is achieved in an arbitrary dimension.
No connection between the dimension of the space and the number of sides of the polygon
is required.
Similar objects have already been studied in dimension 2 and 3 by Thurston [8] and by

Fenchel [9], who studied right-angled hexagons. Costa andMartínez [5] studied right-angled
polygons with an arbitrary number of sides in the hyperbolic plane. More recently Delgove
and Retailleau [7] classified right-angled hexagons in H5. In their work, 2× 2 quaternionic
matrices having Dieudonné determinant 1 are used in order to describe the direct isometries
of H5. While this approach based on quaternions is very convenient, it can not be extended
to arbitrary dimensions. By using Clifford matrices instead, we are able to generalise the
construction to any dimension. Particularly, 2× 2 quaternionic Clifford matrices are used to
describe direct isometries of H4.
In the first section we develop more precisely the connection between hyperbolic space

and the Clifford algebra. Then we discuss the role of the cross ratio for Clifford vectors
and its geometrical interpretation. Our main result, the algorithmic construction of �p , is
presented in the second section. In the last part we treat the case when the convex hull of
the p vertices of the polygon �p give rise to a hyperbolic (p − 1)-simplex. A necessary
condition for its realisation is stated. As a conclusion we discuss in more details a special
case in 4 dimensions, supposing that all the edges of the edge path have equal length. By
exploiting the work of Dekster and Wilker [6] we explicitly state a necessary and sufficient
condition for realisability depending on such a side length. Surprisingly, it turns out that the

side length must be related to the golden ratio γ = 1+√
5

2 .

2 The real Clifford algebra and hyperbolic space

In this section we present the notion of Clifford algebra and its relation to isometries of
hyperbolic space. For a more complete description we refer to the works of Ahlfors [1,2],
Vahlen [13] and Waterman [14] (see also [11, Section 7]).

2.1 The real Clifford algebra Cn

Consider the real Clifford algebra Cn generated by i1, . . . , in , that is

Cn = 〈
i1, . . . , in | i j il = −il i j , i2l = −1 for l �= j

〉
,

which is a unitary associative real algebra. Every element x of the algebra Cn can be uniquely
written as x = ∑

xI I , where xI ∈ R and the sum is taken over all the products I = ik1 · · · ikm ,
with 1 ≤ k1 < · · · < km ≤ n and 1 ≤ m ≤ n. Here the empty product I0 is included and
identified with i0 := 1. Hence Cn is a 2n-dimensional real vector space. In particular we can
identify C0 with R, C1 with C and C2 with H, the Hamiltonian quaternions. To each element
x = ∑

xI I we associate a norm as given by |x |2 = ∑
x2I , inducing a Euclidean structure on

Cn . Denote with �(x) the coefficient x0, called the real part of x , while �(x) = x − �(x) is
called the non-real part of x . If �(x) = 0 we will refer to x as a pure element of Cn .
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On Cn there are three well-known involutions. Let x ∈ Cn , x = ∑
xI I . Then:

(i) x∗ = ∑
xI I ∗, where I ∗ is obtained from I = ik1 · · · ikm by reversing the order of the

factors, that is I ∗ = ikm · · · ik1 ;
(ii) x ′ = ∑

xI I ′, where I ′ is obtained from I = ik1 · · · ikm by replacing each factor ik with
−ik , that is I ′ = (−ik1) · · · (−ikm ) = (−1)m I ;

(iii) x = (x∗)′ = (x ′)∗.

The involutions (i) and (iii) are anti-automorphisms, while the involution (ii) is an automor-
phism.
Of particular interest are Clifford elements of the form x = x0+ x1i1+ · · ·+ xnin , called

Clifford vectors. The set

V
n+1 = {x0 + x1i1 + · · · + xnin | x0, . . . , xn ∈ R}

of all Clifford vectors is an (n + 1)-dimensional real vector space, naturally isomorphic to
the Euclidean space R

n+1. Notice that for an element x ∈ V
n+1 we have x∗ = x and hence

x = x ′ as well as x + x = 2�(x) and xx = xx = |x |2. Moreover every non-zero vector x
has an inverse given by x−1 = x

|x |2 . Hence finite products of non-zero vectors are invertible
and they form the so-called Clifford group �n . Observe that we have �n = Cn\{0} only for
n ∈ {0, 1, 2}.
2.2 Square root of a Clifford vector

Next we introduce the notion of the square root of a Clifford vector. It will be a generalisation
of the square root of quaternions (see [10] for example) in the following way:

Proposition 1 Let y ∈ V
n+1\{0} be a Clifford vector. If y /∈ R<0, then there exist exactly

two elements x1, x2 ∈ V
n+1 such that x21 = x22 = y; x1 and x2 are both called a square root

of y. If y ∈ R<0, we have the three following situations depending on n:

• If n = 0, then there is no element x ∈ V
1 such that x2 = y,

• If n = 1, then there are exactly two elements x1, x2 ∈ V
2 such that x21 = x22 = y,

• If n ≥ 2, then there are uncountably many square roots of y.

Proof Suppose that x2 = y, with x, y ∈ V
n+1\{0}. Then x2 = y and |x |2 = |y|. We have

the following two equations:

x(x + x) = xx + x2 = |y| + y, (1)

(x + x)2 = x2 + 2xx + x2 = y + 2|y| + y = 2(�(y) + |y|). (2)

Observe that the term 2(�(y) + |y|) ≥ 0.
Now let y /∈ R<0, then we have �(y) + |y| > 0, and the element

x := |y| + y√
2(�(y) + |y|) ∈ V

n+1 (3)

satisfies x2 = y. Indeed,

x2 = |y|2 + 2|y|y + y2

2�(y) + 2|y| = (y + 2|y| + y)y

2�(y) + 2|y| = y.

Notice that in the special case if y ∈ R>0, the identity (3) yields x = ±√
y as desired. For

y /∈ R the square roots of y have to lie in the plane spanned by 1 and y which is isomorphic
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toC, ensuring the non-existence of more than two roots. By abuse of notation the square root
x of y is denoted by

√
y := x .

Let y ∈ R<0. For n = 0 or 1 the assertion is trivial. Let n ≥ 2. We can write y = −z2 for
some z ∈ R>0. In this case consider x := z · u where u is a pure Clifford vector with norm
1. In general for any pure Clifford vector we have

0 = (u + u)u = uu + u2 = |u|2 + u2,

which implies u2 = −|u|2. Hence x2 = z2u2 = −z2|u|2 = −z2. ��
Remark 1 Notice that Proposition 1 remains true for y ∈ �2 = H\{0} since y + y = 2�(y)

still holds. However, it does not hold for a general element of Cn or even �n , n ≥ 3. Indeed,
for an arbitrary y ∈ �n one has y + y �= 2�(y). For example let y = i1i2i3 ∈ �n, n ≥ 3.
Then y + y = 2i1i2i3. Hence Eq. (2) does not hold.
Remark 2 For the square root

√
y of a Clifford vector y ∈ V

n+1\R≤0 we have:

• For all positive μ ∈ R>0,
√

μy = √
μ

√
y,

• For the inverse √
y−1 = √

y−1 = 1
|y|

√
y.

• The square root of −y can be found by a rotation of 90◦: √−y = i
√

y for some pure
Clifford vector i with i2 = −1. This also holds for negative y ∈ R<0.

2.3 Clifford matrices and hyperbolic isometries

We now take a look at matrices having entries in the extended Clifford group �n ∪{0}. These
matrices will be used to explicitly represent direct isometries of the hyperbolic space Hn+2
(see for example [14] and [11, Section 7]).

A Clifford matrix is a 2× 2 matrix A =
(

a b
c d

)
with

a, b, c, d ∈ �n ∪ {0}, ab∗, cd∗, c∗a, d∗b ∈ V
n+1, ad∗ − bc∗ ∈ R\{0},

wheread∗−bc∗ is theAhlfors determinant of A.Denote the set of suchmatrices byGL(2, Cn).
By a result of Vahlen and Maass [2, p. 221] the set

SL(2, Cn) =
{

A =
(

a b
c d

)
∈ GL(2, Cn) | ad∗ − bc∗ = 1

}
(4)

of Clifford matrices with Ahlfors determinant 1 is a multiplicative group.

Each element T =
(

a b
c d

)
∈ SL(2, Cn) has the inverse matrix T −1 =

(
d∗ −b∗

−c∗ a∗
)
.

Furthermore SL(2, Cn) is generated by the matrices(
1 t
0 1

)
,

(
0 −1
1 0

)
,

(
a 0
0 a∗−1

)
,

where t ∈ V
n+1 and a ∈ �n (see for example [11, Section 7]).

The group SL(2, Cn) plays an important role in our investigation since it is closely related
to the group of orientation preserving isometries of the hyperbolic (n + 2)-space realised in
the upper half-space according to

Hn+2 = {
x = (x0, x1, . . . , xn+1) ∈ R

n+2 | xn+1 > 0
}

∼= V
n+1 × R>0.
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The compactification Hn+2 is given by the union of Hn+2 with the boundary set ∂ Hn+2 =
V

n+1 ∪ {∞} of points at infinity of Hn+2.
Consider the projective group

PSL(2, Cn) = SL(2, Cn)/{±I }.
It is known that this group acts bijectively on V

n+1 ∪ {∞} by
T (x) = (ax + b)(cx + d)−1 (5)

with T (−c−1d) = ∞, T (∞) = ac−1 if c �= 0, and T (∞) = ∞ otherwise. By Poincaré
extension, the action (5) can be extended to the upper half-space Hn+2. In this way we obtain
an isomorphism between PSL(2, Cn) and the group Möb+(n + 1) of orientation preserving
Möbius transformations of V

n+1 ∪ {∞} (see [4,14]). Since the group Isom+ (
Hn+2) of

orientation preserving isometries of Hn+2 is isomorphic toMöb+(n+1), we get the following
identification:

Isom+ (
Hn+2) ∼= Möb+ (n + 1) ∼= PSL(2, Cn). (6)

Therefore any direct isometry of Hn+2 can be represented by a Clifford matrix in
PSL(2, Cn).
Finally, we remark that Möbius transformations act triply transitively on V

n+1 ∪ {∞}
(see [15, Section 6], for example). That is, given two triplets {x1, x2, x3} and {x ′

1, x ′
2, x ′
3} of

distinct points in the boundary, there always exists a transformation T ∈ Möb(n + 1) with
T (xi ) = x ′

i . For n = 0 this map is unique and for n = 1 it is unique if one demands that it
preserves the orientation. In higher dimensions this map is not unique anymore.

2.4 The cross ratio

As in the classical case, we shall use the cross ratio to study configurations of points in
V

n+1 ∪ {∞}.
Definition 1 Let x, y, z, w be four pairwise different Clifford vectors in V

n+1. Then

[x, y, z, w] := (x − z)(x − w)−1(y − w)(y − z)−1 ∈ �n\{0} (7)

is called the cross ratio of x, y, z and w.

We extend the definition (7) by continuity to V
n+1 ∪ {∞}, allowing x , y orw to be∞, by

[∞, y, z, w] = (y − w)(y − z)−1 for x = ∞, (8)

and similarly for y = ∞ and w = ∞. Moreover in an analogous way we put
[x, y,∞, w] = (x − w)−1(y − w).

The cross ratio satisfies the following transformation behaviour (see [4, Lemma 6.2]):

[T (x), T (y), T (z), T (w)] = (cz + d)∗−1[x, y, z, w](cz + d)∗, (9)

for all T =
(

a b
c d

)
∈ SL(2, Cn).

Hence, the real part and the norm of the cross ratio [x, y, z, w] of four vectors are invariant
under the action of T . However, the cross ratio itself is not an invariant.
We specialise the cross ratio in the following way: consider two oriented geodesics s, t in

Hn+2 whose endpoints s−, s+ and t−, t+ are four distinct points in V
n+1 ∪ {∞}.
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Definition 2 The cross ratio �(s, t) of s and t is defined by

�(s, t) := [
s−, s+, t−, t+

]
. (10)

Lemma 1 Let s and t be two geodesics as above. If s and t intersect then �(s, t) = �(t, s).
If s and t are disjoint, then �(s, t) = �(t, s) if one of the endpoints is ∞ or if the cross
ratios are real, otherwise the two cross ratios are conjugate.

Proof Assuming one of the endpoints to be infinity, let s = (x,∞) with x ∈ V
n+1. We can

apply a translation

(
1 −x
0 1

)
such that s is mapped to (0,∞). By (9), any translation leaves

the cross ratio unchanged. Using (8) it is easy to see that �(s, t) = �(t, s).
Let now s and t be two arbitrary geodesics with no endpoint at infinity. We know that we

can always find an isometry T =
(

a b
c d

)
∈ SL(2, Cn) mapping the two endpoints of one of

the geodesics to 0 and∞. Using (9) and what we have just discussed above we get
(ct− + d)∗−1[s−, s+, t−, t+](ct− + d)∗ = [

T (s−), T (s+), T (t−), T (t+)
]

= [
T (t−), T (t+), T (s−), T (s+)

]
= (cs− + d)∗−1[t−, t+, s−, s+](cs− + d)∗.

Hence the two cross ratios�(s, t) and�(t, s) are conjugate. This implies that if the cross
ratios are real, then the equality �(s, t) = �(t, s) holds. In particular, if two geodesics
intersect, then �(s, t) = �(t, s) by Proposition 2 below. ��
Now consider three geodesics r, s and t in Hn+2 with pairwise different endpoints

r−, r+, s−, s+ and t−, t+ in V
n−1 ∪ {∞}.

Definition 3 The quantity
�(r, s, t) := [

s+, s−, r+, t+
]

(11)

is called the double bridge cross ratio of (r, s, t).

Definition 4 The ordered triple (r, s, t) is called a double bridge if s is orthogonal to r and
t such that r �= t . If |�(r, s, t)| > 1, then the intersections r ∩ s and s ∩ t do not coincide
and we call the double bridge properly oriented.

Consider a properly oriented double bridge (r, s, t). The norm of �(r, s, t) encodes the
hyperbolic length of the geodesic segment [r, t] on s between r and t . Indeed, assume w.l.o.g.
that the endpoints of s in the double bridge (r, s, t) are s− = 0 and s+ = ∞ (see Fig. 1). The
hyperbolic distance δ of two points p, q ∈ s in Hn+2 with pn+2 > qn+2 is equal to (see [3,
p. 131])

δ = log
(

pn+2
qn+2

)
.

On the other hand, by (7) we get

|�(r, s, t)| = |[∞, 0, r+, t+]| = |t+|
|r+| .

If we take p = s ∩ t and q = r ∩ s, we conclude that δ = log(|�(r, s, t)|).
The following results will be of importance:
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Fig. 1 Double bridge

Proposition 2 Two hyperbolic geodesics s and t intersect if and only if their cross ratio
�(s, t) ∈ R<0. Furthermore s and t are perpendicular if and only if �(s, t) = −1.
Proof Since hyperbolic isometries act triply transitively, there is an isometry represented by
A ∈ SL(2, Cn) mapping s and t into (0,∞) and (1, x), x ∈ V

n+1. Then, by (7) and (8), the
cross ratio of A(s) and A(t) equals�(A(s), A(t)) = [0,∞, 1, x] = x−1, and the assertions
follow for A(s) and A(t). Moreover, by (9), a real cross ratio stays invariant under isometry.

��
Proposition 3 Let s = (0,∞) and t = (1, y) with y �= 0,∞ be two disjoint geodesics in
Hn+2. Then the common perpendicular l is (−√

y,
√

y). This perpendicular is unique up to
orientation.

Proof Let l = (z, w) denote the common perpendicular between s and t . By Proposition 2
and by (8), we get

�(s, l) = [0,∞, z, w] = −1. (12)

and
�(t, l) = [1, y, z, w] = −1. (13)

Equation (12) yields z = −w. The Eq. (13) states that

(1− z)(1+ z)−1 = −(y − z)(y + z)−1. (14)

It is easy to see that (1− z)(1+ z)−1 = (1+ z)−1(1− z), so that

(1− z)(y + z) = −(1+ z)(y − z).

By expanding the above equation we obtain y = z2. Notice that by construction, since s and
t are disjoint, we have y /∈ R<0. Hence, by applying Proposition 1, the result follows for
l = (±√

y,∓√
y). ��
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Fig. 2 Standard configuration
double bridge

3 The main theorem

3.1 Preliminaries

Our aim is to construct oriented right-angled polygons in hyperbolic space from a minimal
number of prescribed parameters.

Definition 5 An oriented right-angled polygon with p sides in Hn+2 (or p-gon for short),
n ≥ 0, is a p-tuple of oriented geodesics (S0, S1, . . . , Sp−1)with Si−1 �= Si+1 for i (mod p)

and such that Si is orthogonal to Si+1 for 0 ≤ i ≤ p − 2 and Sp−1 is orthogonal to S0.
We usually denote it by �p .
We call such a p-gon�p non-degenerate if consecutive intersections do not coincide (that

is Si−1∩ Si �= Si ∩ Si+1 for i (mod p)) and the double bridges (Si−1, Si , Si+1), i (mod p),
are properly oriented.

We can take p ≥ 5 since the simplest case of a right-angled polygon is the pentagon. There
cannot be a hyperbolic rectangle since the common perpendicular of two geodesics S0 and
S2 is unique. Hence if there was a hyperbolic rectangle (S0, S1, S2, S3), two geodesics would
have to be identical.
Note that it is no restriction to only consider p-gons in H p−1 since the convex hull of p

geodesics can at most have dimension p − 1. Hence, we will always refer to this case.
Recall that the one-point compactified vector space Vp−2 ∪ {∞} forms the boundary of

hyperbolic (p − 1)-space
H p−1 = {

(x, y) ∈ V
p−2 × R>0

}
.

Consider the standard configuration double bridge (r, s, t) similar to Sect. 2.4 with r =
(−1, 1), s = (0,∞) and t = (−x, x) for x ∈ V

p−2\ {−1, 0, 1} (see Fig. 2).
A small computation shows that the double bridge cross ratio is given by

�((−1, 1), (0,∞), (−x, x)) = [∞, 0, 1, x] = x . (15)
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If conversely the first two geodesics of this double bridge and a desired double bridge
cross ratio q are given, one can construct the third geodesic as (− q, q). In the general case
this is not easy since the Clifford vectors do not commute. In view of (15) we shall start with
the configuration given by the geodesics (−1, 1), (0,∞) and (−x, x). If the double bridges
are supposed to be properly oriented, this poses the immediate restriction |x | > 1.
To construct more geodesics we will have to apply certain isometries to achieve this

configuration from a general double bridge. These isometries depend on the double bridge
cross ratios in the right-angled polygon�p they are part of.

Definition 6 For a set of given Clifford vectors
{
q1, . . . , qp−3

} ⊂ V
p−2\ {0} define the

isometries φi of upper half-space by the following Möbius transformations:

φi : x �→ √−2 qi
−1

(x + qi ) (x − qi )
−1√−2 qi , 1 ≤ i ≤ p − 3. (16)

If qi ∈ R>0, choose
√−2 qi := √

2 qi i1.
Let 	i be the concatenation 	i := φi ◦ φi−1 ◦ · · · ◦ φ1.

Note that the isometries φi carry the two geodesics (0,∞) and (− qi , qi ) into the geodesics
(−1, 1) and (0,∞) of a double bridge in the aforementioned setting. However, these isome-
tries are not uniquely defined by this property. We will always apply these φi if we need an
isometry which maps given geodesics to specific other geodesics in a polygon �p .
The Clifford matrix corresponding to φi is(√−2 qi

−1 qi
√−2 qi

−1
√−2 qi

−1 − qi
√−2 qi

−1

)
. (17)

The inverse φ−1
i (x) = √−qi (1+ x)(1− x)−1√−qi is represented by the matrix(

qi
√−2 qi

−1 qi
√−2 qi

−1
√−2 qi

−1 −√−2 qi
−1

)
. (18)

Repeatedly applying these isometries to geodesics in a �p enables us to standardise the
cross ratio of a double bridge in a p-gon and eliminate the problem of the cross ratio not
being invariant under isometries (Fig. 3).

3.2 The theorem

Definition 7 Let
(
S0, . . . , Sp−1

)
be a right-angled p-gon. Define the gauged double bridge

cross ratios �̃i for i = 1, . . ., p − 3 by the following recursive definition:
�̃1 := �(S0, S1, S2) , (19)

�̃i+1 := �(	i (Si ) ,	i (Si+1) ,	i (Si+2)) . (20)

The Clifford vectors qi which are needed to define the maps	i are calculated along the way
as

qi = �̃i . (21)

These gauged double bridge cross ratios will be the parameters describing the non-
degenerate right-angled p-gons in H p−1 in the Theorem 1 below. Hence consider the set

Pp := {
(q1, . . . , qp−3) | qi ∈ V

p−2, |qi | > 1, 1 ≤ i ≤ p − 3} (22)

9
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Fig. 3 Gauging by an isometry

of (p − 3)-tuples of non-zero Clifford vectors. Denote by

RAPp :=
{ (

S0, . . . , Sp−1
)
non-degenerate right-angled polygon in H p−1

with S0 = (−1, 1) , S1 = (0,∞)
}

(23)

the set of non-degenerate right-angled polygons with p sides. The calculation of the gauged
double bridge cross ratios gives a map �̃ : RAPp → Pp . Denote the image of this map by
P∗

p := �̃
(
RAPp

) ⊂ Pp . This is the set of parameters which will yield a non-degenerate�p

in the construction below.

Theorem 1 The map �̃ : RAPp → P∗
p is a bijection. The inverse map can be given as an

explicit construction of a right-angled p-gon �p from a tuple of p − 3 parameters in P∗
p.

3.3 Proof of Theorem 1

Bijectivity It is sufficient to prove the injectivity of �̃ since it is surjective by definition.
Note that in the standard configuration double bridge of Fig. 2, there is a one-to-one cor-
respondence of Clifford vectors x and geodesics t = (−x, x) as given by Eq. (15). Now
assume there are two p-gons �p = (S0, . . . , Sp−1), �′

p = (S′
0, . . . , S′

p−1) ∈ RAPp such

that �̃
(
�p

) = �̃
(
�′

p

)
= (

q1, . . . , qp−3
)
. By definition S0 = S′

0 and S1 = S′
1. By the

above correspondence we also have S2 = S′
2. Furthermore the maps φ1, . . . , φp−3 are the

same for both�p and�′
p since these maps are defined by q1, . . . , qp−3 as given in Eq. (16).

Therefore the map 	i yields the same one-to-one correspondence between geodesics and
Clifford vectors in both p-gons.

Construction of the polygon �p The inverse map �̃−1 is given by the construction of a�p

from p − 3 parameters q1, . . . , qp−3 ∈ V
p−2.

Assume we are given p − 3 parameters (q1, …, qp−3) ∈ P∗
p .
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Start The first two geodesics are fixed as S0 = (−1, 1) and S1 = (0,∞). Since this is
the standard configuration double bridge considered above, we find S2 = (− q1, q1) if we
demand �(S0, S1, S2) = q1.

The geodesic S3 To find the endpoints of S3, we benefit from the isometry φ−1
1 above which

maps (−1, 1) to (0,∞) and (0,∞) to S2. If q2 was the cross ratio of a double bridge involving
(−1, 1) and (0,∞), the third geodesic would be (− q2, q2). Since S3 is part of the double
bridge starting with (0,∞) and S2, S3 can be found by applying φ−1

1 to (− q2, q2), that is
S3 = (φ−1

1 (− q2), φ
−1
1 (q2)).

The next geodesic in the general case The further procedure expands the previous idea. First
we note that the next geodesic is given by the parameter q3. The geodesic S4 would then be
the image of (− q3, q3) under the isometry 	−1

2 mapping (−1, 1) and (0,∞) to S2 and S3,
respectively.
In general, assuming we have calculated the geodesics S0, . . . , Sk for some k with 2 ≤

k ≤ p − 3, we can use 	−1
k−1 in order to obtain Sk+1 = (	−1

k−1(− qk),	
−1
k−1(qk)).

Existence of the last geodesic After using all the parameters q1, . . . , qp−3, we have deter-
mined the geodesics S0, . . . , Sp−2. As a consequence of Proposition 2 the last common
perpendicular between S0 and Sp−2 exists and is unique as long as

�
(
S0, Sp−2

)
/∈ R−. (24)

This is ensured by the set P∗ ⊂ P . ��
Remark 3 Since the Clifford vectors do not commute, one cannot directly compute the com-
mon perpendicular Sp−1 using the equations

�
(
Sp−1, S0

) = −1, �
(
Sp−1, Sp−2

) = −1. (25)

However, one can use an isometry to obtain a nice configuration where the terms in the
equations above commute. Writing Sp−2 = (a, b), consider the isometry

ψ : x �→α−1 (1+ x)(1− x)−1 α−1 (26)

where α := √−(1+ a)(1− a)−1. This isometrymaps S0 to (0,∞) and Sp−2 to (1, c)where
c := α−1 (1+ b)(1− b)−1 α−1.
Hence, by Proposition 3

Sp−1 = (
ψ−1 (−√

c
)
, ψ−1 (√

c
))

(27)

modulo orientation where ψ−1 is given by

ψ−1(x) = (α x α − 1) (α x α + 1)−1 . (28)

Remark 4 A major drawback is that we cannot explicitly describe P∗
p . One can take a set of

parameters
(
q1, . . . , qp−3

) ∈ Pp , apply the above construction and afterwards checkwhether
the created object actually is a non-degenerate right-angled p-gon.
If all the parameters qi have norm |qi | > 1 the proper orientation of the geodesics

S1, . . . , Sp−3 is automatically guaranteed. So one needs to check the orientation of S0, Sp−2
and Sp−1. This can be done by calculating the norm of the double bridge cross ratios with
the respective geodesic as the central one. Since the norm of the cross ratio is invariant under
isometry we do not have to use the gauged double bridge cross ratios at this point. If the
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orientation of Sp−1 is wrong, one can just invert it. If the orientation of Sp−2 is wrong, one
needs to replace the parameter qp−3 by− qp−3 and the construction yields the same�p just
with the inverted orientation of Sp−2. If the orientation of S0 is wrong, one can replace the
parameter q1 by − q1. This introduces a factor i to the left and to the right of the map φ−1

1 ,
where i is a root of −1 in the plane spanned by 1 and q1; respectively i = i1 if q1 is real.
Such a map is a rotation of 180◦ in the plane spanned by 1 and i .
After some exemplary calculations, we conjecture that for p = 5 the set

{(q1, q2) ∈ P5 | �(q1) �= 0, q1 �⊥ q2} (29)

yields non-degenerate right-angled 5-gons up to orientation.

4 Right-angled polygons with full span

One natural question which arises when studying right-angled polygons is the question of the
dimension of the resulting object. In this section we consider right-angled p-gons which have
the highest possible dimension. This is the case if the p intersection points are the vertices of
a (p − 1)-simplex. Thus the parameters will be taken from a (p − 2)-dimensional Clifford
vector space Vp−2 ⊂ Cp−3.

4.1 A necessary condition for the realisation of ( p − 1)-simplices

If we want some set of parameters to yield a simplex, we need to pass to a new dimension
with every new geodesic in the construction. This basic idea results in the following theorem:

Theorem 2 If the parameters q1, . . . , qp−3 ∈ Cp−3 give rise to a right-angled polygon �p

whose intersection points are the vertices of a simplex, then the parameters together with 1
have to form a basis of the Clifford vectors according to

〈
1, q1, . . . , qp−3

〉 = V
p−2.

This theorem is a consequence of the following lemma:

Lemma 2 Let (S0, S1, . . . , Sk), k ≥ 2 be a finite sequence of geodesics in upper-half space
H p−1 such that S0 = (−1, 1), S1 = (0,∞) and Si−1 ⊥ Si for i = 1, . . . , k. Furthermore
denote by qi := �̃ (Si−1, Si , Si+1) the gauged double bridge cross ratios of the respective
double bridges for i = 1, . . . , k − 1 and write Si = (S−

i , S+
i ) for all geodesics.

Then the linear subspace of V
p−2 spanned by the endpoints of the geodesics is the same

as the subspace spanned by {1, q0, q1, . . . , qk−1}. In symbols this means〈
S±
0 , S±

2 , S±
3 , . . . , S±

k

〉 = 〈1, q1, q2, . . . , qk−1〉 . (30)

The geodesic S1 is left out since ∞ /∈ V
p−2.

Proof Weprove this by induction over k. For k = 2 the lemma is plain, since S2 = (− q1, q1).
Hence, we have to prove

〈
1, q1, q2, . . . , qk−1, S±

k+1
〉 = 〈1, q1, q2, . . . , qk〉. We know that

Sk+1 is given as the image of (− qk, qk) under the isometry 	−1
k−1. This isometry is given

as a concatenation of the maps φ−1
i : x �→ √−qi (1 + x)(1 − x)−1√−qi , 1 ≤ i ≤ k − 1.

If qi /∈ R, φ−1
i restricts to an isometry on H3 where the boundary is given as ∂ H3 =

〈1, qi 〉 ∪ {∞}. Likewise, φi restricts to an isometry on H4 where the boundary is given as
∂ H4 = 〈1, qi , qk〉∪{∞}. The case qi ∈ R follows in the samemanner, by yielding isometries
leaving corresponding subspaces H2 and H3 invariant. Thus follows the statement. ��

12

ht
tp
://
do
c.
re
ro
.c
h



Fig. 4 Hyperbolic pentagon with
right-angled cyclic edge path

Notice that the theorem above does not give a sufficient condition. If the parameters qi are
pairwise orthogonal to each other and pure Clifford vectors then the geodesics S0 and Sp−2
will contribute sides of length 0.

4.2 Hyperbolic 4-simplices with an orthogonal cyclic edge path

In the end, it would be nice to have an a priori condition on the parameters of at least
some family of pentagons. Dekster and Wilker [6] proved a criterion for the existence of n-
simplices with vertices p1, . . . , pn+1 with given side and diagonal lengths li j = d (

pi , p j
)
,

1 ≤ i < j ≤ n + 1 in a Euclidean, spherical or hyperbolic space X ∈ {
En, Sn, Hn

}
. They

call a symmetric (n + 1) × (n + 1)-matrix L = (li j ) allowable if lii = 0 and li j > 0 for
i �= j . The matrix L is called realisable in the space X if there are n +1 points p1, . . . , pn+1
in X with the given distances d

(
pi , p j

) = li j . They gave a criterion for realisability in each
of the three above cases. We are especially interested in the hyperbolic case.

Theorem 3 [6, Theorem 1 (hyperbolic case)] Let L = (li j ) be an allowable (n+1)×(n+1)-
matrix and let its entries be used to form the (n × n)-matrix S = (si j ) where

si j = cosh li,n+1 cosh l j,n+1 − cosh li j .

Then L is realisable if and only if the eigenvalues of S are non-negative. If L is realisable
then the dimension of each realisation is equal to the rank of S.

Nowwe can easily treat the case of a hyperbolic pentagon having a cyclic edge path along
which all sides have the same length (Fig. 4). With [6] we can get a criterion on the side
lengths and due to symmetry it might be possible to find the corresponding orientations of
the sides.

Lemma 3 A right-angled hyperbolic pentagon �5 = (S0, . . . , S4) with all side lengths

equal to a > 0 is realisable as a 4-simplex if and only if cosh(a) < γ , where γ = 1+√
5

2
denotes the golden ratio.

Proof By using hyperbolic trigonometry (see for example [12, Section 3.5]) we obtain the
relation cosh(b) = cosh2(a). We can now construct the two matrices L and S as in [6,
Theorem 1]. We get
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L =

⎛
⎜⎜⎜⎜⎝
0 a b b a
a 0 a b b
b a 0 a b
b b a 0 a
a b b a 0

⎞
⎟⎟⎟⎟⎠ .

Let us define x := cosh(a). We then have

S =

⎛
⎜⎜⎝

x2 − 1 x3 − x x3 − x2 0
x3 − x x4 − 1 x4 − x x3 − x2

x3 − x2 x4 − x x4 − 1 x3 − x
0 x3 − x2 x3 − x x2 − 1

⎞
⎟⎟⎠ .

By Dekster’s and Wilker’s Theorem, the matrix L is realisable as a 4-simplex if and only
if all the eigenvalues of S are positive. This is true if and only if S is positive definite. By
Sylvester’s criterion, it is enough to check that all the top left minors of S have positive
determinant:

det1 = x2 − 1,
det2 = x4 − 2 x2 + 1 = (x2 − 1)2 = (x + 1)2(x − 1)2,
det3 = −x8 + 2 x7 + x6 − 2 x5 − 2 x4 + 3 x2 − 1,

det4 = det(S) = 2 x10 − 10 x9 + 15 x8 − 15 x6 + 2 x5 + 10 x4 − 5 x2 + 1.
Notice that x > 1 since a must be greater than 0. Hence det1 and det2 are always greater

than 0. Furthermore, det3 is positive whenever −1 < x < 1−√
5

2 or 1 < x < 1+√
5

2 , hence
only the latter has to be considered. The determinant of S is positive everywhere except in
1−√

5
2 , 1, 1+

√
5

2 , where it vanishes. Combining everything we obtain that S is positive definite
whenever 1 < x < γ , giving us the desired result. ��
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