Journal article
+ 1 other files
Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier
-
Durantie, Estelle
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Barosova, Hana
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Drasler, Barbara
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Rodriguez-Lorenzo, Laura
Adolphe Merkle Institute, University of Fribourg, Switzerland - Water Quality Group, Water Environment Unit, Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga, Portugal
-
Urban, Dominic A.
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Vanhecke, Dimitri
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Septiadi, Dedy
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Ackermann-Hirschi, Liliane
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Petri-Fink, Alke
Adolphe Merkle Institute, University of Fribourg, Switzerland - Chemistry Department, University of Fribourg, Switzerland
-
Rothen-Rutishauser, Barbara
Adolphe Merkle Institute, University of Fribourg, Switzerland
Show more…
Published in:
- Biointerphases. - 2018, vol. 13, no. 6, p. 06D404
English
Inhalation of combustion-derived ultrafine particles (≤0.1 μm) has been found to be associated with pulmonary and cardiovascular diseases. However, correlation of the physicochemical properties of carbon-based particles such as surface charge and agglomeration state with adverse health effects has not yet been established, mainly due to limitations related to the detection of carbon particles in biological environments. The authors have therefore applied model particles as mimics of simplified particles derived from incomplete combustion, namely, carbon nanodots (CNDs) with different surface modifications and fluorescent properties. Their possible adverse cellular effects and their biodistribution pattern were assessed in a three- dimensional (3D) lung epithelial tissue model. Three different CNDs, namely, nitrogen, sulfur codoped CNDs (N,S-CNDs) and nitrogen doped CNDs (N-CNDs-1 and N- CNDs-2), were prepared by microwave-assisted hydrothermal carbonization using different precursors or different microwave systems. These CNDs were found to possess different chemical and photophysical properties. The surfaces of nanodots N- CNDs-1 and N-CNDs-2 were positively charged or neutral, respectively, arguably due to the presence of amine and amide groups, while the surfaces of N,S-CNDs were negatively charged, as they bear carboxylic groups in addition to amine and amide groups. Photophysical measurements showed that these three types of CNDs displayed strong photon absorption in the UV range. Both N-CNDs-1 and N,S-CNDs showed weak fluorescence emission, whereas N-CNDs-2 showed intense emission. A 3D human lung model composed of alveolar epithelial cells (A549 cell line) and two primary immune cells, i.e., macrophages and dendritic cells, was exposed to CNDs via a pseudo-air-liquid interface at a concentration of 100 μg/ml. Exposure to these particles for 24 h induced no harmful effect on the cells as assessed by cytotoxicity, cell layer integrity, cell morphology, oxidative stress, and proinflammatory cytokines release. The distribution of the CNDs in the lung model was estimated by measuring the fluorescence intensity in three different fractions, e.g., apical, intracellular, and basal, after 1, 4, and 24 h of incubation, whereby reliable results were only obtained for N-CNDs-2. It was shown that N-CNDs-2 translocate rapidly, i.e., >40% in the basal fraction within 1 h and almost 100% after 4 h, while ca. 80% of the N-CNDs-1 and N,S-CNDs were still located on the apical surface of the lung cells after 1 h. This could be attributed to the agglomeration behavior of N-CNDs-1 or N,S-CNDs. The surface properties of the N-CNDs bearing amino and amide groups likely induce greater uptake as N-CNDs could be detected intracellularly. This was less evident for N,S- CNDs, which bear carboxylic acid groups on their surface. In conclusion, CNDs have been designed as model systems for carbon-based particles; however, their small size and agglomeration behavior made their quantification by fluorescence measurement challenging. Nevertheless, it was demonstrated that the surface properties and agglomeration affected the biodistribution of the particles at the lung epithelial barrier in vitro.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Chimie, AMI - Bio-Nanomatériaux
-
Language
-
-
Classification
-
Chemistry
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/307273
Other files
Statistics
Document views: 66
File downloads:
- fin_cno.pdf: 73
- fin_cno_sm.pdf: 71