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Inhalation of combustion-derived ultrafine particles (≤0.1 μm) has been found to be associated with
pulmonary and cardiovascular diseases. However, correlation of the physicochemical properties of
carbon-based particles such as surface charge and agglomeration state with adverse health effects
has not yet been established, mainly due to limitations related to the detection of carbon particles in
biological environments. The authors have therefore applied model particles as mimics of simplified
particles derived from incomplete combustion, namely, carbon nanodots (CNDs) with different
surface modifications and fluorescent properties. Their possible adverse cellular effects and their
biodistribution pattern were assessed in a three-dimensional (3D) lung epithelial tissue model.
Three different CNDs, namely, nitrogen, sulfur codoped CNDs (N,S-CNDs) and nitrogen doped
CNDs (N-CNDs-1 and N-CNDs-2), were prepared by microwave-assisted hydrothermal carboniza-
tion using different precursors or different microwave systems. These CNDs were found to possess
different chemical and photophysical properties. The surfaces of nanodots N-CNDs-1 and
N-CNDs-2 were positively charged or neutral, respectively, arguably due to the presence of amine
and amide groups, while the surfaces of N,S-CNDs were negatively charged, as they bear carbox-
ylic groups in addition to amine and amide groups. Photophysical measurements showed that these
three types of CNDs displayed strong photon absorption in the UV range. Both N-CNDs-1 and
N,S-CNDs showed weak fluorescence emission, whereas N-CNDs-2 showed intense emission. A 3D
human lung model composed of alveolar epithelial cells (A549 cell line) and two primary immune
cells, i.e., macrophages and dendritic cells, was exposed to CNDs via a pseudo-air-liquid interface
at a concentration of 100 μg/ml. Exposure to these particles for 24 h induced no harmful effect on
the cells as assessed by cytotoxicity, cell layer integrity, cell morphology, oxidative stress, and
proinflammatory cytokines release. The distribution of the CNDs in the lung model was estimated
by measuring the fluorescence intensity in three different fractions, e.g., apical, intracellular, and
basal, after 1, 4, and 24 h of incubation, whereby reliable results were only obtained for N-CNDs-2.
It was shown that N-CNDs-2 translocate rapidly, i.e., >40% in the basal fraction within 1 h and
almost 100% after 4 h, while ca. 80% of the N-CNDs-1 and N,S-CNDs were still located on the
apical surface of the lung cells after 1 h. This could be attributed to the agglomeration behavior of
N-CNDs-1 or N,S-CNDs. The surface properties of the N-CNDs bearing amino and amide groups
likely induce greater uptake as N-CNDs could be detected intracellularly. This was less evident for
N,S-CNDs, which bear carboxylic acid groups on their surface. In conclusion, CNDs have been
designed as model systems for carbon-based particles; however, their small size and agglomeration
behavior made their quantification by fluorescence measurement challenging. Nevertheless, it was
demonstrated that the surface properties and agglomeration affected the biodistribution of the
particles at the lung epithelial barrier in vitro. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/1.5043373

I. INTRODUCTION

Epidemiological studies conducted over the last two
decades have shown a positive correlation between the level

of particulate air pollution and increased adverse health
effects,1–3 including increased pulmonary diseases4,5 as well
as a rise in the number of deaths from cardiovascular
disease.6–9 The exact causal connection between air pollu-
tion—including particles derived from incomplete combus-
tion processes such as ultrafine particles (UFPs), i.e., those
smaller than 100 nm in diameter—and adverse health effects
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is still not fully understood; however, certain molecular and
cellular mechanisms are generally assumed to play a key
role. In addition, the translocation of UFPs across the lung
barrier into the blood stream is also difficult to assess with
traditional carbon-based particles. To date, there is only one
study that describes a rapid and significant translocation of
inhaled carbonaceous nanoparticles to the systemic circula-
tion and other extrapulmonary organs,10 whereas other
similar studies detected only a low degree of translocation of
carbonaceous nanoparticles.11,12 Studies of Nemmar et al.10

and Mills et al.11 have provided a convincing argument that
the particle translocation observed was mainly a result of the
translocation of soluble pertechnate used as a detection
signal that had been cleaved from the carbonaceous particles.
It is therefore currently accepted that the degree to which
inhaled UFPs translocate into the circulation is rather small;
however, cumulative effect data for this translocation are
lacking. A major fraction of UFPs is composed of a carbona-
ceous core resulting from incomplete combustion or high
temperature processes. The major sources of these pollutants
are the combustion of fossil fuels and common human activi-
ties, such as cooking, candle burning, cigarette smoke, and
printing.13 The unique properties of UFPs (i.e., their small
size and large reactive surface area) can make them particu-
larly harmful to the lung and other organs.14 Due to their
small size, UFPs diffuse deeply into the lung15,16 and upon
deposition in the alveolar region, interact locally with lung
cells or translocate across the lung barrier, thus reaching the
blood or lymphatic circulation. Controlled human exposures
with elemental carbon UFPs have shown adverse effects on
the lungs and cardiovascular system.13 On the other hand,
the organic content of UFPs has been intrinsically correlated
with the induction of higher oxidative stress.17

It is important to establish the relationship between the
structure and composition of inhaled ultrafine carbon particles
and their adverse health effects in order to clearly identify the
hazardous components. We have therefore applied model
carbon particles to study the biodistribution upon exposure
onto the three-dimensional (3D) lung cell coculture model.
The particles chosen as model are carbon nanodots (CNDs),
which can be synthesized, tuned with respect to their surface
chemistry and agglomeration behavior, and are furthermore
less toxic than quantum dots.18 In particular, CNDs were
chosen as the particle models due to their unique properties:
(i) their reliable mimicry of ultrafine airborne particles,
(ii) their particularly small size (<10 nm), (iii) their controlla-
ble surface chemistry, and (iv) their fluorescent properties.
CNDs are formed of a carbon core composed of paracrystal-
line domains, i.e., carbon sp2 domains with sp3 defects while
their surface is mainly composed of sp3 carbon atoms and
functional groups. This structure confers interesting optical
properties such as strong light absorption in the UV region
and photoluminescence in the blue-green optical window.19

Among the various routes to synthesize CNDs, the combus-
tion of carbon precursors is a very interesting approach given
its similarity to the carbonaceous airborne particles generation,
as well as the possibility of surface functionalization.20

In the following study, we have explored the biodistribu-
tion of different CNDs across a lung barrier model after dif-
ferent exposure time points, i.e., 1, 4, and 24 h. Three CNDs
with different properties were prepared, all of which bear
nitrogen functional groups at the surface; N-CNDs-1, which
are strongly agglomerated; N-CNDs-2, which are highly
hydrophilic; and N,S-CNDs bearing thiol and carboxylic
groups, which are negatively charged. Their biodistribution
was analyzed on the 3D lung model developed by
Rothen-Rutishauser et al.,21 composed of human lung alveolar
cells (A549), primary human monocyte-derived macrophages
(MDM), and monocyte-derived dendritic cells (MDDC). The
cells were exposed to CNDs at a concentration of 100 μg/ml
under pseudo-air-liquid interface [pseudo-air-liquid interface
(ALI)] conditions. Cytotoxicity, oxidative stress, and proin-
flammation were assessed after 24 h. CNDs’ fractions were
monitored after 1, 4, and 24 h by fluorescence measurements,
i.e., in the small volume of added phosphate-buffered saline
(PBS) solution or attached to the cells at the apical side, in the
cellular fraction, and in the medium from the basal side.

II. EXPERIMENT

All the chemicals and reagents were purchased from
Sigma-Aldrich (Switzerland) unless otherwise specified. All
cell culture reagents were purchased from Gibco, Thermo
Fisher Scientific (Switzerland), unless otherwise specified.

MilliQ water (H2O) was used in all the experiments and it
refers to ultrapure deionized water of 180ΩS cm (Millipore
AG, Switzerland).

A. CND synthesis

N-CNDs-1 and N,S-CNDs were prepared using a sophisti-
cated microwave Multiwave Pro (Anton Paar, Germany) in
HVT50 pressure vessels made of Poly(tetrafluoroethylene)
with an additional modifier Perfluoro (propylvinylether)
(reffered as PTFE-TFM) and N-CNDs-2 were prepared in a
domestic microwave (Imtron GmBH, Germany).

N-CNDs-1: Each vessel was loaded with an aqueous sol-
ution consisting of citric acid (1.5 g, 7.8 mmol), ethylenedi-
amine (1.4 g, 23.4 mmol), and MilliQ water (6 ml). Vessels
(24) were loaded in the microwave and irradiated at a power
of 1200W [(1) 1 min from 0 to 1200W, hold 15 min at
1200W; (2) 1 min from 0 to 1200W, hold 30 min at 1200
W] (must reach >200 °C).

N,S-CNDs: Each vessel was loaded with an aqueous sol-
ution consisting of citric acid (0.75 g, 3.9 mmol), L-cysteine
(0.47 g, 3.8 mmol), and MilliQ water (3 ml). Twenty
vessels were loaded into the microwave and irradiated at a
power of 1200W (1 min from 0 to 1200W, hold 13 min at
1200W). The resulting black syrup was diluted with
NaOHaq (1M).

N-CNDs-2: Citric acid (10.50 g, 54.7 mmol, 1 eq.) was
dissolved in MilliQ water (38.50 ml) in a 300 ml Erlenmeyer
flask and ethylenediamine (75%, 14.00ml, 164.1 mmol, 3 eq.)
was added. The mixture was irradiated at a power of 800W
for 7 min.
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Collected fractions were dialyzed against MilliQ water
through a dialysis membrane (regenerated cellulose membrane,
1 kDa) for several days until the washing solution remained col-
orless. CNDs were then lyophilized giving N-CNDs-1 (112.3mg)
as a brown powder, N,S-CNDs (657.4 mg) as a brown powder,
and N-CNDs-2 (33.0 mg) as a pale brownish powder.

B. CNDs characterization

Mean hydrodynamic diameter and polydispersity of
CNDs in MilliQ water at a concentration of 1 mg/ml were
analyzed by Taylor-dispersion analysis (TDA) previously
described by Urban et al.22 Briefly, sizing experiments were
performed using an ActiPix D100 UV-vis area imaging
detector (Paraytec, York, UK, 20 Hz sample rate). The detector
uses a sensor array, with 1280 columns by 1024 rows, giving
a total of 1.3 megapixels. Each pixel has a size of 7 × 7 μm, so
a total of 49 μm2 is imaged. Particle suspensions were injected
into a fused silica capillary (Polymicro Technologies, Phoenix,
USA) under continuous flow conditions, using a capillary
electrophoresis injection system (Prince 560 CE Autosampler,
Prince Technologies B.V., Netherlands). The total capillary
length (74.5 μm inner diameter) was 130 cm, with the length
to the end of the first window being 45 cm and the length
to the end of the second window being 85 cm, and a total
window length of 1 cm. The detector and capillary were
placed inside of the injection system to allow for temperature
regulation, which was kept constant at 25 °C.

Infrared spectra were recorded on a Jasco FT/IR-4100
(FTIR, Jasco Europe S.R.L., Italy) spectrometer in the solid
state. Elemental analysis was conducted using a Flash2000
Organic Elemental Analyzer (Thermo Scientific, USA), each
measurement was performed using 2 mg of CNDs and in
duplicate. ζ potentials were recorded using a 90Plus Particle
Size Analyzer (Brookhaven, USA) in MilliQ water at a con-
centration of 20 μg/ml. The absorption spectra were recorded
on a Jasco V-670 spectrophotometer ( Jasco Europe S.R.L.,
Italy) using 10 mm path length quartz cuvettes. The emission
spectra were measured via Cary Eclipse fluorescence spec-
trometer (Agilent, USA) using 10 mm path length cuvettes at
an excitation wavelength of 360 nm. In order to visualize the
particle morphology, transmission electron microscope
(TEM; Fei Technai Spirit, Oregon, USA) operating at 120 kV
was used. CNDs diluted in MilliQ water at a concentration of
1 mg/ml were pipetted onto TEM copper grid. Representative
TEM images (supplementary material39) were captured using
a Veleta CCD camera (Olympus, Japan).

C. 3D human lung epithelial tissue barrier model

1. Cell cultures

Experiments were carried out using the human alveolar
epithelial type II cell line A549, primary MDM and MDDC.
The A549 cell line (ATCC CCL-185) was obtained from the
American Type Culture Collection (ATCC, USA); cultured
in Roswell Park Memorial Institute medium (RPMI 1640)
supplemented with 10% (v/v) fetal bovine serum (FBS), 1%
(v/v) L-glutamine, and 1% (v/v) penicillin/streptomycin; and

placed in a humidified incubator (37 °C, 5% CO2). Human
blood monocytes (MDM and MDDC) were isolated from
buffy coats provided by the blood donation service SRK Bern
as previously described by Lehmann et al.23 and purified
using CD14 magnetic beads (Microbeads, Milteny Biotech,
Germany).24 Monocytes were cultured at a density of 106

cells/ml in supplemented RPMI 1640 with the growth factors
allowing cells to differentiate [granulocyte-macrophage colony-
stimulating factor and interleukin 4 (IL-4) (both 10 ng/ml)
for MDDC and M-CSF (10 ng/ml) for MDM] for 7 days.
Isolated MDDC and MDM from one donor were used for
one independent data set. Whole experiment was repeated
four times, using cells from four different donors and four
different A549 cell passages.

2. 3D coculture model

The cocultures were prepared as previously described.21,25

Transparent BD Falcon cell culture inserts (surface area of
0.9 cm2, pores of 3.0 μm diameter, polyethylene terephthalate
membranes for 12-well plates; BD Biosciences) were placed
in BD Falcon tissue culture plates (12-well plates; BD
Biosciences) containing 1.5 ml medium (lower chamber),
and A549 cells (28 × 104 cells/cm2, in 0.5 ml) were seeded in
the upper chamber. After 5 days of culturing the A549 cells,
the coculture was assembled by adding MDM and MDDC.
Briefly, the inserts were placed in a Petri dish turned upside
down, and the cells at the bottom of the membrane were
gently abraded with a cell scraper. MDDC (69 × 104 cells/cm2)
was then pipetted onto the bottom side of the inserts and incu-
bated for 70min at 37 °C and 5% CO2. Afterwards, the inserts
were placed back into the well plate containing 1.5ml of pre-
heated fresh supplemented RPMI medium. Finally, MDM
(1.4 × 104 cells/cm2, 0.5 ml) were gently added on the top of
the A549 cells and the cocultures were incubated for an addi-
tional 24 h. The cells were then exposed to air at the ALI for
an additional 24 h prior to exposure by removing the upper
medium and replacing the medium from the lower chambers
with 0.6 ml of fresh supplemented RPMI.

D. Cell exposure

The cells were washed in the basal compartment with PBS
(Gibco, USA) and subsequently transferred to FluoroBrite
Dulbecco’s modified Eagle’s medium (DMEM) Media
(DMEM-based formulation with 90% lower background fluo-
rescence signal than the standard phenol red-free DMEM) sup-
plemented with 10% (v/v) FBS, 1% (v/v) L-glutamine, and
1% (v/v) penicillin/streptomycin. The particles were diluted to
working concentration with supplemented FluoroBrite DMEM
Media, and 100 μl of the suspension was immediately applied
on the apical side of the coculture model. The cocultures were
previously exposed to air for 24 h, and 100 μl of CNDs sus-
pension was applied on top of the coculture model. As the
volume of suspension is rather low, this most likely does
not influence the preformed layer of the surfactants.
Hereby, mentioned application is referred to as the
pseudo-ALI approach (as previously described by Endes
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et al.26). The volume of CND suspensions (100 μl), cover-
ing surface of the coculture model, form a thin layer, so the
majority of the particles are assumedly to be directly in
contact with the cell surface. Therefore, the total CND dep-
osition was assumed to be in the range of ∼11 μg/cm2 (100
μl of 100 μg/ml suspension applied on the surface area of
0.9 cm2). The cells were exposed for 1, 4, and 24 h in order
to investigate the kinetics of the particle translocation
through the cell layer. The applied concentration was carefully
chosen based on the detection limit of the spectrofluorometer.

E. Biological response

Samples were collected after 24 h of exposures to CNDs
for laser scanning microscopy [LSM; fixed in 4% parafor-
maldehyde (PFA), see the procedure below], and basal
medium was immediately cooled to −80 °C after the collec-
tion for further cytokine measurements.

1. Cytotoxicity

The release of lactate dehydrogenase (LDH) into the super-
natant as a result of cell membrane rupture is a well-known
indicator of cytotoxicity. The amount of LDH release was
evaluated using a commercially available LDH diagnostic kit
(Roche Applied Science, Germany), according to the manu-
facturer’s protocol. Each sample was tested in triplicates, and
the enzyme activity was measured photometrically. The absor-
bance was measured at 490 nm with reference wavelength of
630 nm. Triton-X (0.2% in sterile filtered ultrapure water)
applied apically served as a positive control. LDH values are
presented relative to the negative control (untreated cells).

2. Cell layer integrity assessment

Effects on the impartment of cell layer integrity after
exposure to CNDs were assessed via two complementary
approaches by assessing (i) the permeability of cocultures to
fluorescein isothiocyanate (FITC)-dextran and (ii) via transepi-
thelial electrical resistance (TEER) technique. All the solutions
were prepared freshly prior to the experiments. Hank’s
Balanced Salt Solution without Ca2+ and Mg2+ salts (HBSS)
was used for the preparation of ethylenediaminetetraacetic acid
(EDTA) solution for both assays. The rationale behind the
selection of the HBSS (without Ca2+ and Mg2+ salts) is in the
action of the chemical positive control for tight junction
disruption, i.e., EDTA, which acts as a divalent cation chelator.

a. Cell resistance measurements. After 24 h exposures to
CNDs, cocultures grown on membrane inserts were washed
with PBS and TEER measurements (Millicell® ERS-2, EMD
Millipore Corporation, MA, USA) were performed on three
defined spots on each membrane insert (1.5 ml of PBS in the
lower and 0.5 ml of PBS in the upper compartments).
Resistance values of two empty (without cells) membrane
inserts were averaged (after two independent sets of measure-
ments) and subtracted from all the values measured in the
presence of the cells. The absolute values were multiplied by
the growth area of membrane inserts (0.9 cm2) and shown in

Ω·cm2. Positive control samples were treated with EDTA
(2.5 mM in HBSS, 60 min).

b. Assessment of cell layer permeability to FITC-dextran
(70 kDa). A stock solution of EDTA (0.5M in MilliQ water)
was diluted in HBSS to 5 mM. A fluorescein isothiocyanate–
dextran solution [70 kDa; FITC-dextran (25 mg/ml) in MilliQ
water] was diluted to 4 mg/ml (2× concentrated) in HBSS.
After TEER measurements, cocultures were washed with
HBSS and subsequently placed in 12-well cell culture plates
containing 600 μl HBSS in the lower chamber. Then, 250 μl
of HBSS was added in the upper chambers of untreated and
CND-exposed cocultures as well as two empty inserts; 250 μl
of 5 mM EDTA (=2× concentrated, will be further diluted
with FITC-dextran solution) in HBSS was used as the positive
control samples. Solution of 250 μl of the FITC-dextran solu-
tions (4 mg/ml) in HBSS was added in the upper chambers of
all the samples and incubated for 60 min (dark, 37 °C). After
incubation, membrane inserts were immediately removed from
the cell culture plates; the supernatants of HBSS containing
FITC-dextran were collected from the lower chambers (precise
volumes were noted for each sample individually) and kept in
dark until the measurements. The fluorescence measurements
were subsequently conducted in triplicates in black 96-well
plates using the microplate reader (Tristar LB 941, Berthold
Technologies; using the following filters setup: λex/λem: 485/
535 nm). Results were expressed as % of permeability to
FITC-dextran normalized to the supernatant volumes and
relative to the average values of the empty (blank) inserts.

3. Oxidative stress

The intracellular reduced glutathione (GSH) content of the
cocultures was determined using the Glutathione Assay Kit
(Cayman Chemical, MI, USA) according to the manufacturer’s
protocol. After 24 h exposures to CNDs, cocultures cultivated
on the membrane inserts were washed with PBS and cells were
detached from the membranes via cell scarper (600 and 100 μl
of cold 2-(N-morpholino)ethanesulfonic acid buffer in the
upper and lower chambers, respectively). Total protein amount
of each sample was quantified via Pierce BCA Protein Assay
Kit, Thermo Fisher Scientific Inc., USA. The results are pre-
sented as the total intracellular GSH content (in μM) relative to
the total protein content. Cocultures exposed apically to 100 μl
of L-buthionine-sulfoximine [BSO; Sigma-Aldrich GmbH,
Buchs, Switzerland; (200 μM) in supplemented FluroBrite
DMEM] for 24 h were used as a positive control.

4. Cytokine quantification

The (pro-)inflammatory response of the cocultures after
CNDs exposure was measured by quantifying the amount of
tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) and
interleukin 8 (IL-8) (pro-)inflammatory mediators released into
the lower medium chamber via enzyme-linked immunosorbent
assay (ELISA) using the commercially available DuoSet ELISA
Development Kit (R&D Systems, Switzerland) according to the
supplier’s protocol. Cocultures treated with lipopolysaccharide
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[LPS from Escherichia coli at 1 μg/ml] for 24 h acted as the
positive control for the (pro-)inflammatory response.

5. Laser scanning microscopy

The cocultures were fixed for 15min in 4% PFA in PBS
after the 24 h exposure. To investigate cell morphology, fixed
samples were stained with 40,6-diamidino-2-phenylindole dihy-
drochloride (2 μg/ml; Sigma-Aldrich, Switzerland) and phalloi-
din rhodamine (0.132 μM; Invitrogen, USA) for 1 h and
subsequently embedded in Glycergel. An inverted laser scanning
confocal microscope (LSM 710, Zeiss, Germany) was used for
the sample visualization. Image processing was performed using
the restoration software IMARIS (Bitplane AG, Switzerland).

F. Particle distribution

1. Sample collection

After the exposure (i.e., 1, 4, or 24 h), the samples were
collected for further investigation. For spectrofluorometric
analysis, samples were collected as follows: The basal medium
was first collected; then, the top of the cells was washed with
1 ml of PBS and subsequently collected as apical wash.
Finally, 1 ml of PBS was applied on the top of the coculture
model, and cells (from both sides of membrane) were scraped
using a cell scraper and collected. All the collected samples
were investigated within 1 h after the collection.

2. Spectrofluorimetry

The apical wash, scraped cells, and basal medium were mea-
sured via plate reader (Tristar LB 941, Berthold Technologies)
using the following filters setup: λex/λem: 355/470 nm. The
amount of CNDs in each fraction was calculated based on the
standard curve equation (separate curves for each CND sample,
condition, and time-point) using the reading values. Freshly
diluted CNDs in corresponding media (i.e., supplemented
FluoroBrite DMEM or PBS) served as standards; the known con-
centrations applied were carefully chosen to be within the linear
range of the reading, subsequently the linear curve was plotted to
obtain the standard curve equation for further calculations.

G. Statistical analysis

All data are presented as mean ± standard error of the mean.
A total of four independent experiments (n = 4) were performed
for the fractional measurements of the CNDs, cell viability,
oxidative stress, and (pro-)inflammatory cell responses.
Statistical analysis was performed using GRAPHPAD PRISM

(GraphPad Software Inc., La Jolla, USA). Assuming normal dis-
tribution of the data sets, a parametric one-way analysis of vari-
ance (ANOVA) was performed, followed by Dunnett’s multiple
comparison test. Results were considered significant if p < 0.05.

III. RESULTS

A. Particle synthesis and characterization

Citric acid was used as carbon source for the synthesis of
the CNDs, and the particles were doped with nitrogen using
ethylenediamine to form N-CNDs or codoped with nitrogen

and sulfur using cysteine to form N,S-CNDs [Fig. 1(a)].
Precursors were carbonized by microwave irradiation using a
sophisticated microwave (N,S-CNDs and N-CNDs-1) or a
domestic microwave (N-CNDs-2) with optimized parameters.
The transparent starting solutions resulted in brown-colored
solutions upon the formation of CNDs which were dialyzed
against MilliQ water. After lyophilization, CND stock solutions
were prepared in MilliQ water at a concentration of 10mg/ml,
and after several days, N-CNDs-1 revealed strong agglomera-
tion, while N,S-CNDs showed a tendency to agglomerate, and
N-CNDs-2 displayed better dispersability [Fig. 1(b)].

The CNDs were characterized by various methods to
determine their physicochemical properties including TDA,
ζ potential (Table I; FTIR, Fig. 2), and elemental analysis.

TDA was the method of choice to determine the size of
the prepared CNDs as it is appropriate for calculating the
size of nanoparticles or small molecules, which are often dif-
ficult to describe using conventional methods such as
dynamic light scattering or transmission electron micros-
copy.22 Our TDA data showed that N,S-CNDs and
N-CNDs-2 were very small particles, having hydrodynamic
diameters of 0.9 and 1.4 nm, respectively (Table I). These
sizes are the smallest reported for CNDs in the literature;
however, to our knowledge, this study marks the first time
that the size of CNDs size has been determined by TDA.
The size of N-CNDs-1 could not be determined because of
strong agglomeration which resulted in blocking of the mea-
surement tubes. Representative TEM images of N-CNDs-1
showed the agglomeration of the sample [supplementary
material, Fig. S1 (Ref. 39)].

FIG. 1. (a) Synthesis of CNDs. (b) Dispersion behavior and agglomeration
state of CNDs stock solution in MilliQ water (10 mg/ml) after several days;
the vial has been turned upside down: N,S-CNDs showed minor agglomera-
tion, N-CNDs-1 showed strong agglomeration, N-CNDs-2 formed in
stable dispersions.
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As observed in the FTIR spectra (Fig. 2), all CNDs
present bands in the region between 3000 and 3500 cm−1

corresponding to the stretching vibrations of the OH and
NH2 groups. The characteristic bands corresponding to the
amide bonds, resulting from the condensation between car-
boxylic acid and amine groups, were also present in the
three different CNDs with the stretching vibrations of C=O
at 1640 cm−1, N–H at 1555 cm−1, and C–N at 1440 cm−1,
respectively. In addition, N,S-CNDs also showed bands
corresponding to carboxylic groups, namely, the C=O
(1698 cm−1) and C–O (1215 cm−1) stretching vibrations. Thiol
group was also presented with a broad band at 2550 cm−1.

The overall charge of CNDs measured by ζ potential mea-
surement showed that N-CNDs-1 were positively charged,
which is likely due to the presence of a high density of
amine groups on the surface; N-CNDs-2 were found to be
neutral, which can be attributed to the formation of amide
groups as confirmed by the high intensity of the bands at
1640 and 1555 cm−1 in the infrared spectrum (Fig. 2), pre-
sumably a result of the longer reaction time.27 In contrast,

N,S-CNDs were negatively charged, confirming the presence
of carboxylic groups on the surface, which we attribute to
the use of cysteine as synthetic precursor.

Furthermore, the chemical composition of CNDs mea-
sured by elemental analysis showed the successful doping
of CNDs with nitrogen in N-CNDs and nitrogen and sulfur
in N,S-CNDs [supplementary material, Table SI (Ref. 39)].
Interestingly, N-CNDs-2, which are stable in suspension,
showed higher hydrogen content (7% for N-CNDs-2 versus
4% for N-CNDs-1 and N,S-CNDs), while the less colloi-
dally stable N-CNDs-1 had higher carbon content, which
can be attributed to the presence of a greater proportion
of amorphous carbon features (fewer functional groups on
the surface).28

The photophysical measurements showed that CNDs
possess a strong absorption in the UV region with a tail in
the visible region which is a typical feature of CNDs.29

However, the UV-vis absorption curves were found to differ
for each type of CNDs, an effect that was attributed to dif-
ferent surface structures [Fig. 3(a)]. Specifically, the samples
had an absorption at 240 nm, corresponding to π→ π* tran-
sitions of the aromatic sp2 domains, and a band at 335–375
nm assigned to the n→ π* transition of the surface groups.
The latter absorption band in the spectrum of N-CNDs-2,
centered at 345 nm, is strong and symmetrical in contrast to
those of the N,S-CNDs and N-CNDs-1 samples, which
form weak shoulder bands at 335 and 375 nm, respectively.
This is in agreement with previous structural observations in
which N-CNDs-2 were suggested to contain more amide
and carbonyl groups on their surface.30 In addition, the low

TABLE I. Physicochemical properties of CNDs: hydrodynamic diameter
obtained by TDA and ζ potential.

CNDs type
Hydrodynamic diameter by TDA

(nm)
ζ potential

(mV)

N,S-CNDs 0.90 −15.7
N-CNDs-1 — +14.9

N-CNDs-2 1.42 +3.5

FIG. 2. FTIR spectra of all three types of CNDs.
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absorption of N-CNDs-1 in the lower UV region also con-
firms its higher proportion of amorphous carbon.

The fluorescence of the CNDs was measured at the excita-
tion wavelength of 360 nm. The emission appeared to be much
stronger and sharper for N-CNDs-2, indicating a higher photo-
luminescence quantum yield (i.e., ca. 6 and 12 times the inten-
sity of N,S-CNDs and N-CNDs-1, respectively) [Fig. 3(b)].
The peak emission intensity was centered at 417, 432, and 455
nm for N-CNDs-2, N,S-CNDs, and N-CNDs-1, respectively.
The UV-vis and fluorescence spectra of all three types of CNDs
in supplemented FluoroBrite DMEM are shown in Fig. S2 of
the supplementary material,39 showing no change in either their
absorption or fluorescence properties over 24 h. These findings
demonstrate that the CNDs synthesized herein do not modify
their colloidal stability in cell culture media, making them good
candidates for further study in the lung model.

B. Exposure of CNDs to the lung model

CNDs were then exposed to the lung coculture model under
pseudo-ALI conditions as previously described by Tomašek
et al.31 for the application of hydrophobic materials such as
diesel particles. After 24 h exposures to CNDs, cell viability,
assessed via quantification of LDH (intracellular enzyme
released into the medium when cell membrane is ruptured),
showed no increase compared to untreated cells [Fig. 4(a)],
whereas for the positive control (Triton-X) a significant
(p < 0.05) increase could be shown. A minor decrease (thus
not statistically significant) of cell layer permeability for the N,
S-CNDs treated cocultures was observed, while N-CNDs did
not influence the cell layer permeability compared to the
untreated cells [Fig. 4(b)]. There was no decrease in TEER
values observed for all the three types of CNDs [Fig. 4(c)].
Furthermore, based on the LSM data, we have concluded that
there was no difference in cell morphology of CND-treated
cells in comparison to untreated samples [Fig. 4(d)]. In

addition, exposures to CNDs induced no statistically significant
depletion of the total intracellular GSH levels [Fig. 5(a)] in the
cocultures as well as there was no increase in the release of the
tested (pro-)inflammatory markers [TNF-α, IL-1β, and IL-8;
Figs. 5(b)–5(d)].

As no adverse effect of CNDs toward the 3D human lung
model was observed, a thorough investigation of the particle
translocation kinetics was performed in order to better under-
stand the possible CNDs behavior in human body. The frac-
tional distribution of CNDs in three different compartments was
evaluated after their exposure to the lung cocultures. CNDs can
potentially remain on the cell surface (apical side), be internal-
ized by or associated with macrophages and epithelial cells, or
translocated across the cellular barrier into the basolateral side,
as depicted in Fig. 6(a). The CND concentration was determined
in each fraction (i.e., apical, intracellular, and basal) by measur-
ing the corresponding fluorescence intensity via plate reader
after 1, 4, and 24 h of exposure. It was observed that the fraction
of CNDs on the apical side generally decreases over time [Fig. 6
(b)]. Only 40% of N-CNDs-2 remained apical after 1 h, while
more than 80% remained on the apical side with N,S-CNDs and
N-CNDs-1. Conversely, an increase over time was seen in the
basal fraction for N-CNDs, while N,S-CNDs were below the
detection limit [Fig. 6(c)]. Almost 100% of N-CNDs-2 were
translocated after only 4 h, while N-CNDs-1 showed only 20%
of translocation after 4 h which did not increase further.
Quantification of CNDs in the intracellular fraction proved to be
more challenging, especially for N,S-CNDs and N-CNDs-1,
which possess weak fluorescence properties [Fig. 6(d)].
However, a significant amount of N-CNDs-1 (45%) was mea-
sured in the intracellular fraction 24 h postexposure. In contrast,
only a small amount of N-CNDs-2 was detected intracellularly
after 1 h, which remained constant until the 24 h mark.

Figure 6(e) shows the cumulative amount of CNDs
estimated from the sum of the fluorescence intensity in the
apical, intracellular, and basal fractions after 1, 4, and 24 h of

FIG. 3. (a) UV-vis absorption spectra of CNDs (20 μg/ml in MilliQ water). (b) Fluorescence spectra of CNDs in MilliQ water at an excitation wavelength of
360 nm.
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exposition time, presented as stacked columns and expressed as
a percentage of the deposited mass. N,S-CNDs and N-CNDs-1
show a decrease over time from 100% after 1 h to less than
50% after 4 h. A possible explanation for this is that
N,S-CNDs and N-CNDs-1 are unstable when coming into
contact with cells, and that agglomeration can induce measure-
ment artifacts. It is important to note that internalized CNDs
could not be reliably measured as the autofluorescence signal
of the cells was significantly higher than the fluorescence
signal of the CNDs. On the other hand, N-CNDs-2 which are
stable and possessed a stronger fluorescent signal show a
constant recovery of 100% over 24 h.

Consequently, the distribution of N-CNDs-2 can be
measured with good precision over 24 h. As for N,S-CNDs
and N-CNDs-1, measurements remain valid up to 1 h, but
subsequently become unprecise; however, a tendency can
still be observed.

IV. DISCUSSION

Understanding the deposition, interaction, and translocation
of ultrafine particles below 5 nm remains challenging because of
analytical limitations due to their small size. The unique proper-
ties of CNDs, namely, their fluorescence properties, their small
size (<10 nm), and their similarity in structure to the airborne

ultrafine carbon particles, make them ideal candidates to gain a
better understanding of the mechanistic interactions of particles
at the lung barrier. Hence, CNDs of different compositions were
prepared to investigate the effects of surface properties on the
cell response and/or translocation across the lung barrier model.
In total, three different types of CNDs with different surface
characteristics were prepared and their cellular association in the
3D lung model was investigated. Characterization of the CNDs
confirmed their successful formation and doping with nitrogen
and nitrogen/sulfur. Positively charged N-CNDs-1, bearing
amide groups at the surface, displayed a highly amorphous
profile, which could explain the strong agglomeration observed
in both supplemented FluoroBrite DMEM and MilliQ water, as
well as their poor fluorescence properties (i.e., low photolumi-
nescence). In contrast, neutral N-CNDs-2, with a hydrodynamic
diameter of 1.4 nm, exhibited a surface containing organic
groups such as amide, amino, and hydroxyl groups, pos-
sessed very stable dispersions in MilliQ water, and were
found to have intense fluorescence. Negatively charged
N,S-CNDs decorated with additional carboxylic and thiol
groups, with a hydrodynamic diameter of 0.9 nm, exhibited
fewer organic groups on the surface than N-CNDs-2, but at
the same time were not as amorphous as N-CNDs-1, which
resulted in a tendency to agglomerate in MilliQ water and
weak-to-moderate fluorescent signals.

FIG. 4. Effect of CNDs on cell viability, integrity, and morphology of the 3D lung model after 24 h exposures to CNDs. (a) Cell viability assessed by the
release of the intracellular enzyme LDH 24 h after exposure to CNDs. Triton-X (0.2% in MilliQ water, 24 h) was applied as a positive control. Cell layer integ-
rity evaluated via (b) permeability to Dextran-FITC (70 kDa) and (c) TEER levels. EDTA (2.5 mM in HBSS) was applied as a positive control. Data are pre-
sented as mean ± standard error of the mean (n = 4). Data marked as (*) were considered to be increased by a statistically significant amount compared to
negative control (untreated cells) (p < 0.05). (d) LSM images of cocultures exposed to CNDs at xy projection (upper) and xz projection (lower) presenting the
coculture setup. Magenta shows the F-actin cytoskeleton and cyan the nuclei. Scale bar: 20 μm.
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As hereby mentioned, CNDs are meant to be the model
system simulating carbonaceous material in the environment;
therefore, the realistic exposure doses can be estimated as
follows: A healthy, moderately active adult could assumedly
reach a daily inhaled air volume of 25 m3 with an alveolar
lung surface area of about 100 m2 and an alveolar deposition
efficiency of about 10–50% (for 10–100 nm particles).32 The
realistic daily average dose level, therefore, is estimated in an
urban environment to be 7.5 × 10−5 mg/cm2 (particle mass
per cm2 lung epithelium; 24 h clearance from the alveolar
region is negligible), assuming an ultrafine particle mass
concentration of 10 mg/m3 (particles with mobility diameter
<100 nm).32

We have chosen a relatively high, but based on the results
above still nontoxic, concentration of 100 μg/ml of CNDs
under pseudo-ALI conditions, corresponding to an estimated
total deposition of ∼11 μg/cm2. This is about 150-times higher
than the daily average dose level for UFPs in urban air and
20 000-times higher than the level of carbon black reported in
Switzerland.33 However, because of the small size of the CNDs
and the detection limits of the instruments used for fluorescence
measurements, we could not apply a lower concentration.

Biological response of the 3D human lung coculture model
to CNDs was assessed after 24 h exposures to three types of
CNDs. None of the CND types affected viability [cell mem-
brane integrity assessed via LDH release, oxidative stress status

FIG. 5. Biochemical response, i.e., oxidative stress levels and (pro-)inflammatory response, of the 3D lung model after 24 h exposures to CNDs. (a) The total
intracellular GSH content normalized per total protein content. BSO (200 μM in supplemented FluroBrite DMEM, 24 h) was used as a positive control of intra-
cellular GSH depletion. [(b)–(d)] Release of (pro-)inflammatory cytokines TNF-α (b), IL-1β (c), and IL-8 (d). LPS (1 μg/ml in supplemented FluoroBrite
DMEM) was used as a positive control for the secretion of (pro-)inflammatory markers. Data are presented as mean ± standard error of the mean (n = 4). Data
marked as (*) were considered statistically significantly increased compared to negative control (untreated cells) (p < 0.05).
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via intracellular GSH levels, (pro-)inflammatory cytokine
release (TNF-α, IL-1β and IL-8)] and cell layer integrity under
the tested conditions (100 μl of 100 μg/ml at pseudo-ALI). The
statistically significant effect (one-way ANOVA, followed by
Dunnett’s multiple comparison test; p < 0.05) was observed
for all the tested positive controls (Triton-X, BSO, LPS, and
EDTA) and corresponding biological endpoints proving the
responsiveness of the employed 3D human lung model.

Fluorescence measurements of CNDs can be used to inves-
tigate the cellular uptake,34 and in the current study, the frac-
tions of CNDs were assessed in the different compartments of
the 3D lung model. The reliability of the measurements was
assessed by measuring the correlation between the applied
amount of CNDs and the measured amount of CNDs after
exposure time. A good recovery rate was observed with
N-CNDs-2 (i.e., ∼94 ± 23%, 109 ± 24%, and 114 ± 29% after

1, 4, and 24 h, respectively). Similar values were also obtained
for N,S-CNDs (79%) and N-CNDs-1 (87%) after 1 h of expo-
sure; however, for longer exposure times, the recovery rate
was significantly below 100%, since the fluorescence measure-
ments were at the limit of the detection and thus these values
were not considered for the discussion.

The major fraction of N-CNDs-2 (∼85%) was found to be
translocated after 4 h, while a small amount was detected in the
apical wash (∼21%) and intracellularly (∼4%). Previous
studies with different particles have shown a major fraction to
be retained in the lung and a minor fraction translocated, both
in vitro (<5%)25,35 and in vivo (<2%).36,37 However, most of
these particles are metal-based (i.e., gold) and have higher
hydrodynamic diameters (between 5 and 200 nm). Kreyling
et al.37 instilled mice with gold nanoparticles of various
sizes and showed that with negatively charged 1.4 nm gold

FIG. 6. Biodistribution of the CNDs at the lung model barrier. (a) Scheme of the lung coculture with the different fractions highlighted: apical, intracellular, and
basal. Amount of CNDs (%) after exposure in (b) the apical fraction, (c) the basal fraction, and (d) the intracellular fraction. (e) Total cumulative amount of CNDs
presenting the total recovery of CNDs after each time-point distinguishing each fraction [apical (light color), basal (middle color), and intracellular (dark color)].
Data are presented as mean ± standard error of the mean (n = 4). Data marked as (#) were below the detection limit of the instrument.
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nanoparticles, the translocation across the lung tissue was con-
tinuous until 3 h after exposure in the range of 5%. However,
the authors did not determine if the particles were agglomerated
or not. In the present study, the particles are significantly differ-
ent, as the CNDs are composed of a carbon core with an
organic surface and have very small hydrodynamic diameters
(<2 nm). Interestingly, particles similar to the CNDs used in
the current study also showed high translocation in vivo.38

Carbon nanoparticles, such as organic and hybrid (inorganic/
organic) nanoparticles with hydrodynamic diameters of 5 and
7 nm, respectively, were found to be ∼50% translocated 1 h
after deposition in the rat lung. The translocation of N-CNDs-2
was found to be 40% after only 1 h, while ∼44% remained on
the apical surface, which means only a minor fraction (∼12%)
was intracellular. Due to their low cellular uptake, together
with difficulties associated with visualizing the CNDs alone
(low fluorescence signals with emission spectra overlapping
with the background and cell emission spectra) by LSM [see
supplementary material, Fig. S3 (Ref. 39)], it is thus not possi-
ble to postulate a para- or transcellular translocation pathway.

Comparison of the translocated CNDs after 1 h showed that
40% of the N-CNDs-2 particles were found in the basal side,
whereas N-CNDs-1 and N,S-CNDs mostly remained (∼80%)
on the apical side. While in a previous study a similar translo-
cation rate was observed for single and aggregated gold nano-
particles using the same in vitro human 3D cell culture lung
model,25 in the present study, the agglomeration significantly
affected the translocation of CNDs to the basal side.

V. CONCLUSION

Three types of CNDs with different surface properties were
synthesized and thoroughly characterized, including their size,
surface properties, and agglomeration behavior. Their biodistri-
bution at the human lung epithelial tissue barrier was then
studied at different time points. None of the CNDs caused
adverse effects in a human lung epithelial tissue barrier model,
and the biokinetics data showed that the translocation behavior
strongly depends on the particle properties (surface properties
and agglomeration state). However, the small size and weak
fluorescence of N-CNDs-1 and N,S-CNDs made it difficult to
obtain reliable biodistribution data for 4 and 24 h. Further
research is required to determine the applicability of CNDs as
surrogates for carbon-based particles in order to study their
mechanistic interactions with biological systems.
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