Journal article

Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury

  • Moraud, Eduardo Martin Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Zitzewitz, Joachim von International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Miehlbradt, Jenifer Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Wurth, Sophie Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Formento, Emanuele Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • DiGiovanna, Jack Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Capogrosso, Marco University of Fribourg, Switzerland
  • Courtine, Grégoire International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
  • Micera, Silvestro Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland - The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Show more…
    08.01.2018
Published in:
  • Scientific Reports. - 2018, vol. 8, no. 1, p. 76
English After spinal cord injury (SCI), sensory feedback circuits critically contribute to leg motor execution. Compelled by the importance to engage these circuits during gait rehabilitation, assistive robotics and training protocols have primarily focused on guiding leg movements to reinforce sensory feedback. Despite the importance of trunk postural dynamics on gait and balance, trunk assistance has comparatively received little attention. Typically, trunk movements are either constrained within bodyweight support systems, or manually adjusted by therapists. Here, we show that real-time control of trunk posture re-established dynamic balance amongst bilateral proprioceptive feedback circuits, and thereby restored left-right symmetry, loading and stepping consistency in rats with severe SCI. We developed a robotic system that adjusts mediolateral trunk posture during locomotion. This system uncovered robust relationships between trunk orientation and the modulation of bilateral leg kinematics and muscle activity. Computer simulations suggested that these modulations emerged from corrections in the balance between flexor- and extensor-related proprioceptive feedback. We leveraged this knowledge to engineer control policies that regulate trunk orientation and postural sway in real-time. This dynamical postural interface immediately improved stepping quality in all rats regardless of broad differences in deficits. These results emphasize the importance of trunk regulation to optimize performance during rehabilitation.
Faculty
Faculté des sciences et de médecine
Department
Département de Médecine
Language
  • English
Classification
Biological sciences
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/306264
Statistics

Document views: 13 File downloads:
  • cap_clc.pdf: 33