Hyperbolization of cusps with convex boundary
-
Fillastre, François
Université de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France
-
Izmestiev, Ivan
Département de mathématiques, Université de Fribourg, Switzerland
-
Veronelli, Giona
Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse, France
Published in:
- Manuscripta Mathematica. - 2016, vol. 150, no. 3–4, p. 475–492
English
We prove that for every metric on the torus with curvature bounded from below by −1 in the sense of Alexandrov there exists a hyperbolic cusp with convex boundary such that the induced metric on the boundary is the given metric. The proof is by polyhedral approximation. This was the last open case of a general theorem: every metric with curvature bounded from below on a compact surface is isometric to a convex surface in a 3-dimensional space form.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/305024
Statistics
Document views: 26
File downloads: