Valuations with Crofton formula and Finsler geometry
-
Bernig, Andreas
Département de Mathématiques, Université de Fribourg, Switzerland
Published in:
- Advances in Mathematics. - 2007, vol. 210, no. 2, p. 733-753
English
Valuations admitting a smooth Crofton formula are studied using Geometric Measure Theory and Rumin's cohomology of contact manifolds. The main technical result is a current representation of a valuation with a smooth Crofton formula. A geometric interpretation of Alesker's product is given for such valuations. As a first application in Finsler geometry, a short proof of the theorem of Gelfand–Smirnov that Crofton densities are projective is derived. The Holmes–Thompson volumes in a projective Finsler space are studied. It is shown that they induce in a natural way valuations and that the Alesker product of the k-dimensional and the l-dimensional Holmes–Thompson valuation is the (k+l)-dimensional Holmes–Thompson valuation.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/300581
Statistics
Document views: 64
File downloads: