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VALUATIONS WITH CROFTON FORMULA AND FINSLER

GEOMETRY (REVISED VERSION)

ANDREAS BERNIG

Abstract. Valuations admitting a smooth Crofton formula are studied
using Geometric Measure Theory and Rumin’s cohomology of contact
manifolds. The main technical result is a current representation of a
valuation with a smooth Crofton formula. A geometric interpretation
of Alesker’s product is given for such valuations. As a first application
in Finsler geometry, a short proof of the theorem of Gelfand-Smirnov
that Crofton densities are projective is derived. The Holmes-Thompson
volumes in a projective Finsler space are studied. It is shown that they
induce in a natural way valuations and that the Alesker product of the
k-dimensional and the l-dimensional Holmes-Thompson valuation is the
k + l-dimensional Holmes-Thompson valuation.

Introduction

The classical Crofton formula computes the length of a curve in the plane
by averaging the number of intersection points of the curve and a straight
line. Higher dimensional generalizations, where straight lines are replaced by
affine planes of a fixed dimension, are known under the name Linear Kine-
matic Formulas. These formulas were proved by Blaschke and his school.
They can be used to compute the so-called intrinsic volumes of subsets of
Euclidean space. Quite recently, it was shown that similar formulas also
hold in a Finsler setting. A Finsler metric on a manifold is, roughly speak-
ing, the assignment of a norm in each tangent space. There are various
definitions of volume for a Finsler manifold; the two best-known examples
are the Busemann volume (which is the Hausdorff measure of the under-
lying metric space) and the Holmes-Thompson volume (which comes from
symplectic geometry). The reader is referred to [11] for more information
on volumes on Finsler spaces.

A Finsler metric on a finite-dimensional vector space is called projective if
its geodesics are straight lines. As Álvarez Paiva and Fernandes showed, the
Holmes-Thompson volume of a compact submanifold of a projective Finsler
space can be computed by a Crofton formula [9].
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2 ANDREAS BERNIG

The aim of this paper is to put these formulas into the more general
context of valuations. Recall that a (convex) valuation on an n-dimensional
oriented vector space V is a real-valued map Ψ on the space K(V ) of compact
convex subsets such that the following Euler additivity holds true for all
K,L ∈ K(V ) with K ∪ L ∈ K(V ):

Ψ(K ∪ L) + Ψ(K ∩ L) = Ψ(K) + Ψ(L).

Subanalytic valuations are defined similarly, replacing the word “convex”
by “subanalytic”.

Valuations on general manifolds were defined by Alesker in a series of
papers [2]-[6]. Compact convex sets are replaced by a convenient system of
subsets, like the space of compact submanifolds with corners or differentiable
polyhedra. It turns out that, under an additional and important smoothness
condition which is given below, an Alesker valuation on a finite-dimensional
vector space restricts to a convex valuation and to a subanalytic valuation.
Moreover, both restriction maps are isomorphisms. Keeping this in mind,
we will be a bit sloppy and switch between the convex, the subanalytic and
the manifolds with corners setting. In the first sections of this paper, we
will state the results in terms of subanalytic valuations. In later sections, it
will be more convenient to work with convex valuations.

Let us say that a subanalytic valuation admits a smooth Crofton formula
of degree k if there exists a smooth (signed) measure μ on the manifold
AGr+n−k(V ) of oriented affine n − k-planes in V such that

Ψ(X) =

∫
AGr+

n−k
(V )

χ(X ∩ H)dμ(H), X compact, subanalytic. (1)

It is easy to see that the right hand side defines a valuation for every μ,
but not every valuation is of this type.

Since the measure μ is smooth, it is not surprising that the valuation Ψ
has some smoothness properties.

In order to define smoothness of a valuation, we need the notion of the
conormal cycle of a compact subanalytic set. Its definition is recalled in
Section 1, for the moment it is enough to know that there is a canonical way
to associate to each compact subanalytic set a Legendrian cycle cnc(X) in
the cosphere bundle S∗V in such a way that

cnc(X ∪ Y ) + cnc(X ∩ Y ) = cnc(X) + cnc(Y ) X,Y compact, subanalytic.

It follows that each smooth n− 1-form ω on S∗V induces a valuation Ψω

by setting

Ψω(X) := cnc(X)(ω).

Valuations which can be represented in this way are called smooth, com-
pare [3]. The space of smooth valuations on V is denoted by V∞(V ).

A given smooth valuation Ψ may be represented by different forms ω.
But there exists a second order differential operator D, called the Rumin
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CROFTON VALUATIONS 3

operator, such that Dω is uniquely associated to Ψ [16]. This operator is
related to the cohomology of contact manifolds. Its construction will be
sketched in Section 2.

We say that Ψ is of pure degree k if k = 0 and Ψ is a real multiple of
the Euler characteristic or if k > 0, Dω is of bidegree (k, n − k) (w.r.t. the
product S∗V = V × S∗(V ) and Ψ vanishes on points.

Before stating our main results, we have to recall that there is an involu-
tion on the space of smooth valuations, called the Euler-Verdier involution.
It was introduced by Alesker [3] and is induced (up to some factor) by the
natural involution of S∗V .

The heart of the paper is the proof of the following theorem.

Theorem 1. Let μ be a smooth (signed) measure on AGr+
n−k(V ). Then the

valuation Ψ defined by (1) is smooth, of pure degree k and belongs to the
(−1)k eigenspace of the Euler-Verdier involution.

In fact, we will show a bit more. Namely, we will see that Ψ = Ψω for a
form ω with the property that Dω is the Gelfand transform of μ for some
double fibration.

This theorem will be used together with the following uniqueness result.

Theorem 2. Let Ψ be a smooth valuation of pure degree k which belongs to
the (−1)k-eigenspace of the Euler-Verdier involution. If Ψ(M) = 0 for all
k-dimensional submanifolds with boundary, then Ψ = 0.

Let us illustrate these results in the translation invariant case.
Recall that a valuation Ψ on V is called translation invariant if Ψ(x+X) =

Ψ(X) for all x ∈ V and all X. If Ψ = Ψω is smooth, then Ψ is translation
invariant if and only if Dω is translation invariant [16].

A translation invariant valuation Ψ is called of degree k if Ψ(tX) =
tdΨ(X) for all t > 0. By a result of McMullen [24], a non-zero valuation
can be uniquely written as a sum of homogeneous components of degrees
0, 1, . . . , n. In the smooth, translation invariant case Ψ is of degree k if and
only if Ψ is of pure degree k.

A translation invariant valuation Ψ is called even if Ψ(−X) = Ψ(X) for
all X. A smooth translation invariant valuation of degree k is even if and
only if it belongs to the (−1)k-eigenspace of the Euler-Verdier involution
(compare Theorem 3.3.2 in [3]).

On a Euclidean vector space V , translation invariant, even valuations of
degree k can be described by their Klain functions. Given such a valuation
Ψ, its Klain function is the function on the Grassmannian Grk(V ) which
associates to L ∈ Grk(V ) the real number Ψ(DL), where DL is the unit ball
in L. We thus get a map (called the Klain embedding) from the space of
smooth, translation invariant, even valuations of degree k to C∞(Grk(V )).
By a theorem of Klain [23], this map is injective. In fact, Theorem 2 is the
generalization of Klain’s injectivity result to the non translation invariant
situation.
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4 ANDREAS BERNIG

The description of the image of the Klain imbedding was provided by
Alesker-Bernstein [7] in terms of the cosine transform. It implies a partial
converse to Theorem 1: A smooth, even, translation invariant valuation of
degree k admits a smooth translation invariant Crofton measure.

Let us return to the general situation.
Given smooth (signed) measures μ1 on AGr+

n−k1
(V ) and μ2 on AGr+

n−k2
(V ),

let μ be the push-forward under the natural intersection map

AGr+
n−k1

(V ) × AGr+
n−k2

(V ) \ Δk1,k2 → AGr+
n−k1−k2

(V ).

Here Δk1,k2 is the null set of pairs of affine planes of dimensions n− k1 and
n − k2 such that their intersection is not of dimension n − k1 − k2. This
construction appears in [9] and we call μ the Álvarez-Fernandes product of
μ1 and μ2. If Ψ1, Ψ2 and Ψ are the valuations with Crofton measures μ1, μ2

and μ, then we also say that Ψ is the Álvarez-Fernandes product of Ψ1 and
Ψ2. However, at this point it is not clear that this product is well-defined,
since a smooth valuation can have different Crofton formulas.

On the other hand, there is another product, called the Alesker product
on the space of smooth valuations [2].

Theorem 3. Suppose that Ψ1,Ψ2 ∈ V∞(V ) admit smooth Crofton mea-

sures. Then the Álvarez-Fernandes product of Ψ1 and Ψ2 equals the Alesker
product of Ψ1 and Ψ2. In particular, the Álvarez-Fernandes product is well-
defined.

Using Theorems 1, 2 and 3 we will derive the following application in
Finsler geometry.

Theorem 4. Let V be an n-dimensional vector space with a projective
Finsler metric. Then the Holmes-Thompson volume of k-dimensional sub-
manifolds (with or without boundary) extends to a unique smooth valuation
ΨHT

k ∈ V∞(V ) of pure degree k and belonging to the (−1)k-eigenspace of
the Euler-Verdier involution. Moreover, for k + l ≤ n the Alesker product of
ΨHT

k and ΨHT
l is ΨHT

k+l.

Our second application in Finsler geometry concerns projective densities.
The definition of a smooth k-density on a manifold M will be recalled in
Section 6. A smooth k-density φ can be integrated over a (not necessarily
oriented) k-dimensional submanifold N ⊂ M .

A smooth density φ on RP
n is called projective if k-dimensional projective

subspaces are extremal for the variational problem N �→
∫
N φ. φ is called

Crofton density if there exists a smooth (signed) measure μ on the space of
n − k-dimensional projective subspaces such that∫

N
φ =

∫
#{N ∩ L}dμ(L)

for all submanifolds N of dimension k.
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Theorem 5. ([22], [10])
Let φ be a Crofton k-density on RP

n. Then φ is projective.

This theorem was stated by Gelfand-Smirnov [22]. A short proof, using a

PDE characterization of projective densities, was recently given by Álvarez
Paiva-Fernandes [10]. We will give a short, geometric proof of the same
result.

Plan of the paper. The paper is organized as follows. In Section 1 we
introduce the necessary notation from Geometric Measure Theory. Then we
present a short introduction to the theory of support functions and conor-
mal cycles. The construction of the Rumin-de Rham complex of a contact
manifold, in particular Rumin’s operator D, is recalled in Section 2. The
definition of a valuation of pure degree k is introduced and Alesker’s def-
inition of the Euler-Verdier involution is recalled. Then Klain’s injectivity
result is used to prove Theorem 2. Section 3 is about Gelfand transforms
of forms and currents and contains some technical lemmas. The heart of
the paper is Section 4, where Theorem 1 is proved using the Gelfand trans-
form of the conormal cycle under a particular double fibration. The product
structure on valuations is studied in Section 5. In particular, Theorem 3 is
proved. The proof of Theorem 5 is contained in Section 6. In Section 7 we
recall the definition of the Holmes-Thompson volume of a Finsler manifold
and prove Theorem 4.

Acknowledgments. It is a pleasure to thank J. C. Álvarez Paiva and
G. Berck for having taught me some Finsler geometry and answered many
questions in the course of preparation of this manuscript. I thank S. Alesker
for his very useful explanation of the product construction. The remarks of
the anonymous referee helped to improve the presentation and to correct an
erroneous version of Lemma 3.4. I thank the Schweizerischer Nationalfonds
for their support by grant SNF 200020-105010/1.

1. The conormal cycle

We give here a short introduction to the theory of conormal cycles. We
will define conormal cycles of compact convex and of compact subanalytic
sets without fixing an Euclidean metric on V . We do not give proofs and
refer to [21], [13], [14], [15] for details.

1.1. Notation from Geometric Measure Theory. We adopt the follow-
ing convention: a projection map π : A → B between manifolds will just be
denoted by πB. There will be no risk of confusion, since all projections will
be natural ones.

We follow [19] for the notation on Geometric Measure Theory.
The boundary ∂T of a (Federer-Fleming-) current T is defined by ∂T (ω) =

T (dω). A current T with ∂T is called a cycle.
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6 ANDREAS BERNIG

A rectifiable current T such that ∂T is also rectifiable is called an inte-
gral current and the space of k-dimensional integral currents is denoted by
Ik(M). In particular, I0(M) consists of finite linear combinations of Dirac
measures with integer coefficients.

Let f : M → M ′ be a Lipschitz map between (Riemannian) manifolds.
Given a current T such that f is proper on sptT , the push-forward of T
under f is denoted by f∗T .

Let T ∈ Ik(M) and f : M → M ′, where M ′ is an oriented n′-dimensional
manifold. Then the slice 〈T, f, y〉 is defined and belongs to Ik−n′(M) for
almost all y ∈ M ′. Given a smooth map g : N → M and a current T ∈
Ik(N), the following equation holds for almost all y ∈ M ′:

〈g∗T, f, y〉 = g∗〈T, f ◦ g, y〉. (2)

1.2. Cosphere-bundle. Let V be an oriented n-dimensional vector space
and S∗(V ) := (V ∗ \ {0})/R+ its cosphere. An element [ξ] ∈ S∗(V ) can be
identified with the oriented hyperplane ker ξ in V . We set S∗V := V ×S∗(V ),
the cosphere bundle over V . With πV : S∗V → V and πS∗(V ) : S∗V → S∗(V )
denoting the natural projections, the contact structure of S∗V is defined by
Q(x,[ξ]) := d(πV )−1

(x,[ξ])(ker ξ). A form whose restriction to Q vanishes is called

vertical.

1.3. Support functions. Let B be the oriented line bundle over S∗(V ) such
that the fiber over a point [ξ] ∈ S∗(V ) is given by the line B[ξ] := V/ ker ξ,
with induced orientation. There is a natural map u : S∗V → B, (x, [ξ]) �→
x/ ker ξ ∈ B[ξ].

Let T be an integral, Legendrian cycle on S∗V , i.e. an integral cycle of
dimension n − 1 which vanishes on vertical forms. The map

hT : S∗(V ) → I0(B)

[ξ] �→ u∗〈T, π2, [ξ]〉

is called the support function of T . Note that, since we take slices, hT is only
defined for almost every [ξ] ∈ S∗(V ). The value hT ([ξ]) is a 0-dimensional
integral current in B.

One version of Fu’s uniqueness theorem [21] states that T is uniquely
determined by hT .

Next, we describe the support function of a compact convex set K ⊂ V
and of a compact subanalytic set X ⊂ V . Denote the canonical projection
by π[ξ] : V → B[ξ].

We set

hK([ξ]) :=
∑

s∈B[ξ]

(
lim
ε→0

χ(π−1
[ξ] (s) ∩ K) − χ(π−1

[ξ] (s + ε) ∩ K)
)

δ([ξ],s) ∈ I0(B)

and similarly
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hX([ξ]) :=
∑

s∈B[ξ]

(
lim
ε→0

χ(π−1
[ξ] (s) ∩ X) − χ(π−1

[ξ] (s + ε) ∩ X)
)

δ([ξ],s) ∈ I0(B).

Note that in the convex case, there is exactly one value of s where the cor-
responding coefficient is non-zero. In the subanalytic set, there are finitely
many such values of s. In both cases, h([ξ]) ∈ I0(B).

It is well-known that hK uniquely determines K. By a result of Bröcker
[17], hX uniquely determines X.

1.4. Conormal cycles. An integral Legendrian cycle T is called the conor-
mal cycle of K (resp. X) if hT ([ξ]) = hK([ξ]) (resp. hT ([ξ]) = hX([ξ])) for
almost all [ξ] ∈ S∗(V ). The uniqueness of the conormal cycle follows from
the above mentioned theorem by Fu. The existence is easy to prove in the
convex case. In the subanalytic case, the conormal cycle was constructed by
Fu [21]. A more elementary approach is contained in [15].

It is easily checked that for compact convex sets K1,K2 such that K1∪K2

is also convex, we have

cnc(K1 ∪ K2) + cnc(K1 ∩ K2) = cnc(K1) + cnc(K2). (3)

In the same way, for compact subanalytic sets X,Y we have

cnc(X ∪ Y ) + cnc(X ∩ Y ) = cnc(X) + cnc(Y ). (4)

1.5. Projections. Let L0 ⊂ V be an n − k-dimensional oriented subspace.
Let V0 := V/L0 with the induced orientation. Let B0 be the oriented line
bundle over S∗(V0) such that the fiber over a point Ē ∈ S∗(V0) is given by
the oriented line V0/Ē. We set u0 : S∗V0 → B0, (x̄, Ē) �→ x̄/Ē ∈ V0/Ē.

The projection πV0 : V → V0 induces a natural inclusion τ : S∗(V0) →
S∗(V ) and a map τB : B0 → B such that the diagram

B0
τB−→ B

↓ ↓

S∗(V0)
τ

−→ S∗(V )

commutes.
If X is a compact subanalytic set, then the projection of X to V0 is again

compact subanalytic. However, it is better to work with the push-forward
πV0(X). This is no longer a set, but a constructible function on V . At a
point x̄ ∈ V0, its value is by definition the Euler characteristic of the fiber
π−1

V0
(x̄) ∩ X. The theory of support functions and conormal cycles can be

extended to compactly supported constructible functions [15]. In particular,
the following equation holds (and can be used as an ad hoc definition of
hπV0

(X)):

(τB)∗hπV0
(X) = hX ◦ τ. (5)
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2. Smooth valuations and the Rumin-de Rham complex

Let ω be a smooth differential form of degree n − 1 on S∗V . By (4), the
map X �→ cnc(X)(ω) defines a subanalytic valuation Ψω. Such valuations
are called smooth.

The kernel of the map ω �→ Ψω is nontrivial and can be described in terms
of the Rumin operator D. Let us first recall the Rumin-de Rham complex
[25].

Let (N,Q) be a contact manifold of dimension 2n − 1. For simplicity,
we suppose that there exists a global contact form α, i.e. Q = ker α. This
global contact form is not unique, since multiplication by any non-vanishing
smooth function on N yields again a contact form. However, the following
spaces only depend on (N,Q) and not on the particular choice of α.

Vk(N) = {ω ∈ Ωk(N) : ω = α ∧ ξ, ξ ∈ Ωk−1(N)};

Ik(N) = {ω ∈ Ωk(N) : ω = α ∧ ξ + dα ∧ ψ, ξ ∈ Ωk−1(N), ψ ∈ Ωk−2(N)};

J k(N) = {ω ∈ Ωk(N) : α ∧ ω = dα ∧ ω = 0}.

Forms in Vk(N) are called vertical and characterized by the fact that they
vanish on the contact distribution.

Since dIk ⊂ Ik+1, there exists an induced operator dQ : Ωk/Ik →

Ωk+1/Ik+1.
Similarly, dJ k ⊂ J k+1 and the restriction of d to J k yields an operator

dQ : J k → J k+1.
In the middle dimension, there is a further operator, which we call Rumin

operator, defined as follows. Let ω ∈ Ωn−1(N). Then J n contains a unique
element of the form d(ω + α ∧ ν), ν ∈ Ωn−2(N) and Dω is defined to be
this element. The operator D is a second order differential operator. It
can be checked that D|In−1 = 0, hence there is an induced operator D :
Ωn−1/In−1 → Jn.

The Rumin-de Rham complex of the contact manifold (N,Q) is given by

0 → C∞(N)
dQ
→ Ω1/I1 dQ

→ . . .
dQ
→ Ωn−2/In−2 dQ

→ Ωn−1/In−1 D
→ Jn

dQ
→

dQ
→ Jn+1

dQ
→ . . .

dQ
→ J2n−1 → 0.

The cohomology of this complex is called Rumin cohomology and is de-
noted by H∗

Q(N, R). By [25], there exists a natural isomorphism between
the Rumin cohomology and the de Rham cohomology:

H∗
Q(N, R)

∼=
−→ H∗

dR(N, R). (6)

The next theorem (which is a weak version of Theorem 1 in [16]) provides
a link between the Rumin cohomology of the contact manifold S∗V and
smooth valuations.
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Theorem 2.1. ([16])
Let ω be a smooth n − 1-form on S∗V . Then Ψω = 0 if and only if

(1) Dω = 0 and
(2)

∫
S∗

xV ω = 0 for all x ∈ V .

If Dω = 0, then r :=
∫
S∗

xM ω ∈ R is independent of x ∈ V and

Ψω = rχ

where χ denotes the Euler characteristic.

Note that the condition Dω = 0 means that, up to a vertical form, ω is
closed.

Definition 2.2. A smooth valuation Ψ = Ψω is said to have pure degree
k ≥ 1 if Ψ vanishes on points and if the bidegree of Dω (w.r.t. to the product
structure S∗V = V × S∗(V )) is (k, n − k). Ψ has pure degree 0 if it is a
multiple of the Euler characteristic (i.e. Dω = 0).

Alesker introduced an involution on the space of smooth valuations, called
the Euler-Verdier involution. Let s : S∗V → S∗V be the natural involution,
i.e. the map that sends (x,E) ∈ S∗V to (x, Ē) ∈ S∗V , where the bar means
change of orientation.

Definition 2.3. Let Ψ = Ψω be a smooth valuation. Then the Euler-Verdier
involution is defined as (−1)nΨs∗ω.

Of course, one has to check that this operation is well-defined, i.e. inde-
pendent of the choice of ω. This is easily done using Theorem 2.1.

Proof of Theorem 2. The statement is trivial if k = 0. Suppose that Ψ is a
smooth valuation of pure degree k > 0 which belongs to the (−1)k-eigenspace
of the Euler-Verdier involution and which vanishes on k-dimensional sub-
manifolds with boundary.

We can write Ψ = Ψω with Dω of bidegree (k, n − k). By Theorem 2.1
it is enough to show that Dω = 0. The argument we give here follows the
proof of the more general statement Prop. 3.1.5 in [2].

Since Ψ is smooth, we can define for each x0 ∈ V the valuation Ψx0 by

Ψx0(X) :=
1

k!

dk

dtk

∣∣∣∣
t=0

Ψ(tX + x0).

With φx0,t : S∗V → S∗V, (x,E) �→ (tx + x0, E), Ψx0 is represented as
Ψx0 = Ψωx0

with

ωx0 :=
1

k!

dk

dtk

∣∣∣∣
t=0

φ∗
x0,tω.

The exterior derivative d commutes with d
dt and φ∗

x0,t. Hence we get

dωx0 =
1

k!

dk

dtk

∣∣∣∣
t=0

φ∗
x0,tDω.
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Let us use linear coordinates (x1, . . . , xn) on V and (local) coordinates
(y1, . . . , yn−1) on S∗(V ). Since Ψ is of pure degree k, we can locally write
Dω =

∑
I,J ;#I=k,#J=n−k aIJdxI ∧ dyJ with smooth functions aIJ on S∗V

(here I and J range over multi-indices with #I = k and #J = n−k). It fol-
lows that dωx0 =

∑
I,J aIJ(x0, ·)dxI ∧ dyJ . In particular, dωx0 is translation

invariant, of bidegree (k, n − k) and

dωx0(v1, . . . , vn) = Dω(v1, . . . , vn), ∀E ∈ S∗(V ), v1, . . . , vn ∈ T(x0,E)S
∗V.
(7)

Since Dω is vertical, the translation invariance of dωx0 and (7) imply that
dωx0 is vertical, i.e. dωx0 = Dωx0.

We conclude that Ψx0 is translation invariant, smooth, of degree k and
even. By the assumption on Ψ, the Klain function of Ψx0 vanishes. The
injectivity of the Klain imbedding implies that Ψx0 = 0, i.e. Dωx0 = 0. Since
this holds true for all x0 ∈ V , (7) implies that Dω = 0. By assumption,
Ψ = Ψω vanishes on points, hence

∫
S∗

xV ω = 0 for all x ∈ V . Theorem 2.1

gives Ψ = 0. �

3. Double fibrations and Gelfand transform

3.1. Double fibrations.

Definition 3.1. A double fibration is a diagram of manifolds

A
πA←− M

πB−→ B

where

(1) πA : M → A and πB : M → B are smooth fiber bundles;
(2) πA × πB : M → A × B is a smooth embedding and
(3) the sets Ab := πA(π−1

B (b)), b ∈ B and Ba := πB(π−1
A (a)), a ∈ A are

smooth submanifolds.

A morphism between double fibrations is a commutative diagram of fi-
brations

A
πA←− M

πB−→ B
ρA ↓ ρM ↓ ρB ↓

A′
πA′

←− M ′
πB′

−→ B′

3.2. Gelfand transform of a differential form. Now suppose that A and
M are oriented and that the fiber of πA is compact. The fiber integration
(πA)∗ : Ω∗(M) → Ω∗(A) decreases the degree of a form μ by the dimension
of the fiber, i.e. by l := dimM − dim A. It is defined by∫

A
α ∧ (πA)∗μ =

∫
M

π∗
Aα ∧ μ

for all compactly supported differential forms α on A. Other sign conven-
tions can be found in the literature (e.g. [12]); the above one corresponds
to the one in [10].
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It is easily checked that

d(πA)∗μ = (πA)∗dμ (8)

and that for a form α on A the following projection formula holds:

(πA)∗(μ ∧ π∗
Aα) = (−1)l deg α(πA)∗μ ∧ α. (9)

The Gelfand transform of a differential form β on B is the form GT(β) :=
(πA)∗π

∗
Bβ.

We will need the following functorial property of the Gelfand transform
([9], Thm. 2.2). Let

A
πA←− M

πB−→ B
ρA ↓ ρM ↓ ρB ↓

A′
πA′

←− M ′
πB′

−→ B′

be a morphism of double fibrations such that

ξ = πB|ρ−1
M

(m′) : ρ−1
M (m′) → ρ−1

B (πB′(m′))

is a diffeomorphism for all m′ ∈ M ′. Then

(ρA)∗ GT(β) = deg(ξ)GT((ρB)∗β) (10)

where deg(ξ) equals +1 if ξ is orientation preserving and −1 else.

3.3. Gelfand transform of a current. Given a current T in A, the current
π∗

AT on M defined by

π∗
AT (ω) := T ((πA)∗ω)

is called the lift of T and was studied by Brothers [18] and Fu [20]. In the case
of a product bundle M = A×F , the lift of T is simply T × [[F ]]. Moreover,
lifting currents is natural with respect to bundle operations, increases the
dimension by the dimension of the fiber and commutes with the boundary
operator ∂.

Definition 3.2. The Gelfand transform of T is the current GT(T ) :=
(πB)∗π

∗
AT in B.

We will need the following two easy lemmas.

Lemma 3.3. Let πA : M → A and πB : N → B be oriented fiber bundles
with diffeomorphic compact fibers F . Let f̃ : M → N and f : A → B be
smooth maps such that the following diagram commutes

M
f̃

−→ N
↓ πA ↓ πB

A
f

−→ B

Suppose that the induced map f̃a : π−1
A (a) → π−1

B (f(a)) is an orientation
preserving diffeomorphism for each a ∈ A.
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12 ANDREAS BERNIG

Then for an integral k-current T on A and almost all y ∈ N we have

(πA)∗

〈
π∗

AT, f̃ , y
〉

= (−1)l(k−dim B)〈T, f, πB(y)〉.

Proof. Let ν be a smooth non-vanishing form of top-degree on N which
induces the orientation of N . From the assumption it follows easily that
f∗(πB)∗ν = (πA)∗f̃

∗ν.
Let α be a compactly supported smooth form on A of degree k − dim B.

Using the projection formula (9) and the Slicing Theorem ([19], Thm. 4.3.2.
(1)), we get∫

N

(〈
π∗

AT, f̃ , ·
〉

(π∗
Aα)

)
∧ ν = π∗

AT (f̃∗ν ∧ π∗
Aα)

= T ((πA)∗(f̃
∗ν ∧ π∗

Aα))

= (−1)l deg αT ((πA)∗f̃
∗ν ∧ α)

= (−1)l deg αT (f ∗(πB)∗ν ∧ α)

= (−1)l deg α

∫
B

(〈T, f, ·〉α) ∧ (πB)∗ν

= (−1)l deg α

∫
N

(〈T, f, πB(·)〉α) ∧ ν,

and the equation follows. �

Lemma 3.4. Let πB : N → B be an oriented fiber bundle with fiber F and
let f̃ : M → N be a smooth map. Let ψ : N → B × F be an orientation
preserving trivialization of N and π1 : B × F → B, π2 : B × F → F the
canonical projection maps. Let T be an integral current on M . Then for
almost all y ∈ N we have〈

〈T, πB ◦ f̃ , πB(y)〉, π2 ◦ ψ ◦ f̃ , π2 ◦ ψ(y)
〉

= 〈T, f̃ , y〉.

Proof. By ([19], Thm. 4.3.2 (6)), 〈T, f̃ , y〉 = 〈T,ψ ◦ f̃ , ψ(y)〉 for almost all
y ∈ N . The assertion of the lemma follows from πB = π1 ◦ ψ and ([19],
Thm. 4.3.5). �

4. Current representation of a valuation with Crofton

formula

Let V be an oriented, n-dimensional vector space. The Grassmannian
Gr+n−k(V ) of oriented n − k-planes in V has an induced orientation which
can be described as follows.

The tangent space TL Gr+n−k(V ) can be identified with the space of linear

maps from L to some complementary subspace L′. We orient L′ in the
natural way. Let e1, . . . , en−k be a positive base of L and let en−k+1, . . . , en

be a positive base of L′. Let Ai,j , i = 1, . . . , n − k; j = n − k + 1, . . . , n be
the linear map which sends ei to ej . Then we define

A1,n−k+1, A1,n−k+2, . . . , A1,n, . . . , An−k,n
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CROFTON VALUATIONS 13

to be a positive base of TL Gr+n−k(V ).

The oriented affine Grassmannian AGr+
n−k(V ) is a fiber bundle over Gr+n−k(V )

with canonically oriented fibers V/L and has therefore an induced orienta-
tion.

Let 1 ≤ k ≤ n and set

M :=
(
(x,E,L) ∈ V × S∗(V ) × Gr+n−k(V ) : L ⊂ E

)
.

Then the natural projection M → S∗V is a fiber bundle whose fiber above
(x,E) is the oriented Grassmannian Gr+

n−k(E). The natural orientations of

S∗V and Gr+n−k(E) induce an orientation on M . There is also a natural

projection map from M to AGr+
n−k(V ) defined by (x,E,L) �→ x + L.

Proposition 4.1. Let X ⊂ V be compact and subanalytic and 1 ≤ k ≤
n. Define an integral current Hn−k(X) on AGr+

n−k(V ) by integration over

AGr+n−k(V ) with multiplicity function H �→ χ(H ∩ X). Then the Gelfand
transform of cnc(X) for the double fibration

S∗V ←− M −→ AGr+
n−k(V )

is (−1)k(n−k)∂Hn−k(X).

Proof. Let T = GT(cnc(X)) be the Gelfand transform of cnc(X) for the
above double fibration. Let p : AGr+

n−k(V ) → Gr+n−k(V ) be the natural
projection map.

It suffices to show that

〈T, p, L〉 = (−1)k(n−k)〈∂Hn−k(X), p, L〉 (11)

for almost all L ∈ Gr+
n−k(V ) and that ∂Hn−k(X) and T have no vertical

components with respect to p.
Claim 1: The restriction of dp to an approximate tangent plane of T is

surjective.
Let T̃ := π∗

S∗V cnc(X). It is an integral cycle of dimension (n− 1) + (n−

k)(k − 1) = dimAGr+
n−k(V ) − 1.

Let w ∈ T(x,E,L)M be such that dπS∗V (w) is horizontal and such that
dp ◦ dπAGr+

n−k
(V )(w) = 0. Then dπAGr+

n−k
(V )(w) is tangential to the k − 1-

dimensional manifold of affine n − k-planes in E parallel to L.
Let W ⊂ T(x,E,L)M be an approximate tangent plane of T̃ such that

dπAGr+
n−k

(V )(W ) is not degenerated. Since the kernel of dp|x+L has dimen-

sion k, it follows that dπAGr+
n−k

(V )(W ) and ker dp|x+L intersect transversally,

which implies that dp
(
dπAGr+

n−k
(V )(W )

)
= TL Gr+n−k(V ).

Claim 2: The restriction of dp to an approximate tangent plane of ∂Hn−k(X)
is surjectiv.

By definition of H+
n−k(V ), an n − k-plane H ∈ AGr+

n−k(V ) can be in

the support of ∂H+
n−k(V ) only if the Euler characteristic χ(H ′ ∩ X) is not

constant for H ′ near H.
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For L ∈ Gr+n−k(V ), a generic H in p−1(L) intersects X transversally. By

Thom’s isotopy lemma, the Euler characteristic χ(H ′ ∩ X) is constant for
all H ′ near H in AGr+n−k(V ). Hence H /∈ spt ∂H+

n−k(V ). It follows that the

codimension of p−1(L) ∩ spt ∂H+
n−k(V ) ⊂ p−1(L) is positive. Since ∂Hn−k

is a current of codimension 1, the claim follows easily (for instance using a
subanalytic stratification of p compatible with sptHn−k).

Let N be the flag manifold of all pairs (E,L) where E ⊂ V is an oriented
hyperplane and L ⊂ E is an oriented n− k-plane. Then N is a fiber bundle
over S∗(V ) with fiber Gr+n−k(R

n−1) and the induced orientation. We can

also consider N as a fiber bundle over Gr+
n−k(V ) with fiber Gr+k−1(R

k). The
induced orientation of N is the same as the one introduced above, because
dimGr+n−k(R

n) dim Gr+k−1(R
k) = k(n − k)(k − 1) is even.

The projection πS∗(V ) : S∗V → S∗(V ) lifts to a projection πN : M →
N, (x,E,L) �→ (E,L), such that the diagram

M
πN−→ N

↓ πS∗V ↓ πS∗(V )

S∗V
πS∗(V )
−→ S∗(V )

commutes.
For fixed L0, we let V0 := V/L0 and M0 := {(x,E,L) ∈ M : L = L0}.

There is a map πS∗V0 : M0 → S∗V0, (x,E,L0) → (x/L0, E/L0).
Claim 3: For almost all L0 ∈ Gr+n−k(V ) we have

(πS∗V0)∗〈T̃ , πGr+
n−k

(V ), L0〉 = cnc(πV0(X)). (12)

Let T0 be the current on the left hand side. Since 〈T̃ , πGr+
n−k

(V ), L0〉 is

an integral current with support in M0, T0 is a well-defined integral cycle
thanks to Federer’s flatness theorem.

Let W ⊂ T(x,E,L0) Gr+n−k(V ) be a linear subspace such that dπV (W ) ⊂ E.
Then

dπV0 ◦ dπS∗V0(W ) = dπV0 ◦ dπV (W ) ⊂ dπV0(E) = E/L0,

which means that dπS∗V0(W ) is a horizontal plane in T(x/L0,E/L0)S
∗V0. Since

cnc(X) is Legendrian, we can apply this to the generalized tangent planes of

the support of 〈T̃ , πGr+
n−k

(V ), L0〉 and obtain that T0 is a Legendrian cycle.

Let us compute the support function of T0. Let πS∗(V0) : S∗V0 → S∗(V0)

be the projection on the second factor. For almost all Ē0 = E0/L0 ∈ S∗(V0)
we have

〈T0, πS∗(V0), Ē0〉 = (πS∗V0)∗

〈
〈T̃ , πGr+

n−k
(V ), L0〉, πS∗(V0), Ē0

〉
by (2)

= (πS∗V0)∗〈T̃ , πN , (E0, L0)〉 by Lemma 3.4.
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Let B0, u0 : S∗V0 → B0 and τB : B0 → B be as in Section 1. We then
have (on M0)

τB ◦ u0 ◦ πS∗V0 = u ◦ πS∗V .

It follows that

(τB)∗hT0(Ē0) = (τB ◦ u0 ◦ πS∗V0)∗

〈
T̃ , πN , (E0, L0)

〉

= (u ◦ πS∗V )∗ 〈(πS∗V )∗ cnc(X), πN , (E0, L0)〉

= u∗〈cnc(X), πS∗(V ), E0〉 by Lemma 3.3

= hX(E0),

which implies, by Equation (5), that T0 is the conormal cycle of πL0(X).

Claim 4: The slices of T and (−1)k(n−k)∂Hn−k(X) agree for almost all
L0 ∈ Gr+n−k(V ).

Let τ : V0 → AGr+
n−k(V ), x/L0 �→ x + L0. Then τ ◦ πV0 ◦ πS∗V0 =

πAGr+
n−k

(V ) on M0.

We now compute that

〈T, p, L0〉 =
〈
(πAGr+

n−k
(V ))∗T̃ , p, L0

〉

= (πAGr+
n−k

(V ))∗〈T̃ , πGr+
n−k

(V ), L0〉

= τ∗ ◦ (πV0)∗ ◦ (πS∗V0)∗〈T̃ , πGr+
n−k

(V ), L0〉

= τ∗ ◦ (πV0)∗ cnc(πV0(X))

= τ∗∂[[πV0(X)]]

= ∂τ∗[[πV0(X)]].

By definition, [[πV0(X)]] is the integral current which is given by integra-
tion over V0 with multiplicity function x/L0 �→ χ((x + L0) ∩ X). Hence
τ∗[[πV0(X)]] is given by integration over p−1(L) with the multiplicity func-
tion x + L0 �→ χ((x + L0) ∩ X). It follows that

τ∗[[πV0(X)]] = 〈Hn−k(X), p, L〉.

Since ∂〈Hn−k(X), p, L〉 = (−1)k(n−k)〈∂Hn−k(X), p, L〉, the claim follows.
�

The next theorem clearly implies Theorem 1.

Theorem 4.2. Let φ be a smooth form of top degree on AGr+
n−k(V ), 1 ≤

k ≤ n. Define a valuation Ψ on V by

Ψ(X) :=

∫
H∈AGr+

n−k
(V )

χ(X ∩ H)φ(H).

Then Ψ is represented by an n−1-form ω on S∗V with Dω = (−1)k(n−k) GT(φ)
and

∫
S∗

xV ω = 0 for all x ∈ V . In particular, Ψ is smooth. Moreover, Ψ is

of pure degree k and belongs to the (−1)k-eigenspace of the Euler-Verdier
involution.
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Proof. Since AGr+
n−k(V ) is a non-compact manifold of dimension k(n−k+1),

H
k(n−k+1)
dR (AGr+n−k(V )) = 0. Let τ be a k(n− k + 1)− 1-form with dτ = φ.

We claim that Ψ = Ψω with ω := (−1)k(n−k) GT(τ).
Let us first check that Dω = dω. For (x,E,L) ∈ M , let W ⊂ T(x,E,L)M

be a linear subspace such that dπS∗V (W ) is horizontal. Let v be a vector
not contained in E. Then the derivative at 0 of the smooth curve t �→
x + tv + L ∈ AGr+n−k(V ) is not contained in dπAGr+

n−k
(V )(W ). Therefore

dπAGr+
n−k

(V )(W ) is a proper subspace of Tx+L AGr+n−k(V ). It follows that

dω = (−1)k(n−k) GT(φ) vanishes on horizontal n-planes. From the definition
of D it follows that Dω = dω.

Now we compute

Ψ(X) =

∫
H∈AGr+

n−k
(V )

χ(X ∩ H)φ

= Hn−k(X)(φ)

= ∂Hn−k(τ)

= (−1)k(n−k) GT(cnc(X))(τ) by Proposition 4.1

= cnc(X)(ω)

= Ψω(X).

Since the space of affine n − k-planes through x ∈ V has measure zero,
we get ∫

S∗

xV
ω = Ψω({x}) = Ψ({x}) = 0.

Let us check that Dω is of bidegree (k, n−k) with respect to the product
decomposition S∗V = V × S∗(V ).

Given v ∈ TxV × {0} ⊂ T(x,E)S
∗V and (x,E,L) ∈ M , there exists a

unique lift ṽ ∈ T(x,E,L)M with dπGr+
n−k

(V )(ṽ) = 0. Then dπAGr+
n−k

(V )(ṽ)

is tangential to the k-dimensional submanifold in AGr+
n−k(V ) consisting of

affine n − k-planes parallel to L. Therefore, replacing more than k such
vectors into Dω = GT(φ) gives 0.

For each vector w ∈ T(x,E,L)M with dπS∗V (w) ∈ {0} × TES∗(V ) we
have that dπAGr+

n−k
(V )(w) is tangential to the k(n−k)-dimensional manifold

of affine planes containing x. Replacing more that k(n − k) such vectors
into π∗

AGr+
n−k

(V )
φ thus yields 0. Since the dimension of the fibers of πS∗V

is (k − 1)(n − k), this means that replacing more than n − k vectors of
{0}×TES∗(V ) into Dω yields 0. This shows that Dω is of bidegree (k, n−k).

Let us now show that Ψ belongs to the (−1)k-eigenspace of the Euler-
Verdier involution. Let s : S∗V → S∗V , s̃ : M → M, (x,E,L) �→ (x, Ē, L̄)
and s′ : AGr+

n−k(V ) → AGr+
n−k(V ), x + L �→ x + L̄ denote the canonical

involutions.
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These maps define a morphism of double fibrations, i.e. a commutative
diagram of fiber bundles

S∗V
πS∗V←− M

π
AGr+

n−k
(V )

−→ AGr+
n−k(V )

s ↓ s̃ ↓ s′ ↓

S∗V
πS∗V←− M

π
AGr+

n−k
(V )

−→ AGr+
n−k(V )

The natural involution on the Grassmannian Gr+
n−k(V ) has degree (−1)k+n−1.

It follows that the degree of s′ is (−1)k+n−1+k = (−1)n−1. The degree of s̃
is (−1)n+n−k−1 = (−1)k−1. The restriction of πAGr+

n−k
(V ) to the fibers of s̃

has thus degree (−1)n+k.
Using the functorial properties of the Gelfand transform (Equation (10))

and the fact that s is an involution of degree (−1)n, we get

s∗ GT(φ) = (−1)ns∗ GT(φ) = (−1)k GT(φ),

which implies that Ψ belongs to the (−1)k-eigenspace of the Euler-Verdier
involution. �

5. Products of smooth valuations

5.1. Álvarez-Fernandes product. Let Ψ1 ∈ V∞(V ) be represented by
a smooth Crofton measure μ1 on AGr+n−k1

(V ) and let Ψ2 ∈ V∞(V ) be

represented by a smooth Crofton measure μ2 on AGr+n−k2
(V ), where k1 +

k2 ≤ n.
Let Δk1,k2 be the set of pairs (E1, E2) ∈ AGr+n−k1

(V )×AGr+n−k2
(V ) such

that dimE1 ∩ E2 > n − k1 − k2. Then Δk1,k2 is a null set.

Given (E1, E2) ∈ AGr+n−k1
(V ) × AGr+

n−k2
(V ) \ Δk1,k2, the intersection

E1 ∩ E2 has a canonical orientation and belongs to AGr+
n−k1−k2

. We thus
get a map

AGr+n−k1
(V ) × AGr+n−k2

(V ) \ Δk1,k2 → AGr+n−k1−k2
. (13)

Let μ be the push-forward of μ1 × μ2 under this map. Then μ defines
a valuation, which we call the Álvarez-Fernandes product of Ψ1 and Ψ2

(compare [9]).
At this point it is not clear that this product is well-defined, i.e. does not

depend on the choices of μ1 and μ2.

5.2. Alesker product. In this section, we consider for simplicity only con-
vex valuations, although everything also works in the subanalytic case with
Minkowski addition replaced by the convolution product of constructible
functions [17], [13], [15].

Alesker introduced a product of smooth valuations on a finite-dimensional
vector space V ([1], [2]). Let Ψ1 be the smooth convex valuation defined by

Ψ1(K) := ν1(K + A1),
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where ν1 is a smooth measure on V and A1 a convex body with strictly
convex and smooth boundary. Similarly, let Ψ2(K) = ν2(K + A2). Let
ν1 × ν2 be the product measure on V × V and Δ : V → V × V, x �→ (x, x)
the diagonal imbedding. Then the Alesker product Ψ1 · Ψ2 is defined to be
the valuation

Ψ1 · Ψ2(K) = (ν1 × ν2)(Δ(K) + A1 × A2)

=

∫
V

Ψ1(K ∩ (x − A2))dν2(x).

The valuation extends by distributivity to linear combinations of valuations
of the above form and then by continuity to all smooth valuation.

Lemma 5.1. Let Ψ1 be represented by the smooth Crofton measure μ1 on
AGr+n−k1

(V ) and let Ψ2 be any smooth valuation on V . Then for all K ∈

K(V )

Ψ1 · Ψ2(K) =

∫
AGr+

n−k1
(V )

Ψ2(K ∩ E)dμ1(E).

Proof. Both sides of the equation are additive and continuous in Ψ2. There-
fore it suffices to show the equation in the case where Ψ2(K) = ν(K + A),
with ν a smooth measure on V and A a strictly convex body with smooth
boundary.

We then get, by definition of the product

Ψ1 · Ψ2(K) =

∫
V

Ψ1(K ∩ (x − A))dν(x)

=

∫
V

∫
AGr+

n−k1
(V )

χ(K ∩ (x − A) ∩ E)dμ1(E)dν(x)

=

∫
AGr+

n−k1
(V )

∫
V

χ(K ∩ E ∩ (x − A))dν(x)dμ1(E)

=

∫
AGr+

n−k1
(V )

Ψ2(K ∩ E)dμ1(E).

�

Proof of Theorem 3. By Lemma 5.1 we get

Ψ1 · Ψ2(K) =

∫
AGr+

n−k1
(V )

Ψ2(K ∩ E1)dμ1(E1)

=

∫
AGr+

n−k1
(V )

∫
AGr+

n−k2
(V )

χ(K ∩ E1 ∩ E2)dμ1(E1)dμ2(E2)

=

∫
AGr+

n−k1−k2
(V )

χ(K ∩ E)dμ(E).

�
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6. Crofton densities and projective densities

Recall that a k-density on a vector space V is a smooth homogeneous
real-valued function φ on the cone Λk

s(V ) of simple k-vectors in V . Here
the word homogeneous means that φ(λw) = |λ|φ(w) for all λ �= 0 and all
w ∈ Λk

s(V ). A smooth k-density on a manifold M is a smooth map φ that
assigns to x ∈ M a k-density φx on TxM .

Given a smooth k-density φ on a manifold M and a (not necessarily
oriented) k-dimensional submanifold N ⊂ M , the integral

∫
N φ is defined in

the usual way (take charts and use homogeneity to prove that the integral
is independent of the choice of the charts).

A k-density φ on RP
n is called projective if k-dimensional projective sub-

spaces are extremal for the variational problem N �→
∫
N φ. φ is called a

Crofton density if there exists a smooth (signed) measure μ on the space of
n − k-dimensional projective subspaces such that∫

N
φ =

∫
#{N ∩ L}dμ(L)

for all submanifolds N of dimension k.
These notions appear in [22], where it is stated that a k-density is a

Crofton density if and only if it is projective. However, it turns out that the
proof of “projective implies Crofton” is incomplete (cf. [10]). The implica-
tion that a Crofton density is projective is true; a short proof is presented
in [10]. The inverse implication holds true for k = 1 and k = n − 1.

The current representation of Section 4 can be used for a short proof that
Crofton densities are projective.

Theorem 6.1. ([22], [10])
Let φ be a Crofton k-density on RP

n. Then φ is projective.

This theorem follows from the definition of Crofton densities, Theorem 1
and the next theorem.

Theorem 6.2. Let Ψ be a valuation of pure degree k on V . Then affine
k-dimensional subspaces are locally extremal in the following sense. Let X
be a bounded, open and subanalytic subset of a k-dimensional affine subspace
in V . Then X is extremal for Ψ under variations fixing a neighborhood of
∂X.

Proof. The theorem is trivial if k = 0, so let us suppose k > 0. Let Ψ = Ψω

with Dω of bidegree (k, n − k).
Let W be a smooth vector field on V which is zero on a neighborhood

of ∂X. The flow Φ on V generated by W lifts in a canonical way to a
Legendrian flow on S∗V , which is generated by the complete lift W c of W .

The following equality (which in fact holds for every bounded subanalytic
set X) was established in the proof of Theorem 1 in [16]:

d

dt

∣∣∣∣
t=0

Ψ(ΦtX) = ΨiWcDω(X). (14)
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Since Dω is a vertical form of bidegree (k, n − k), iW cDω is the sum of a
form of bidegree (k − 1, n − k) and a vertical form. Each tangent vector of
cnc(X) lying above an inner point of X is of bidegree (k, n−k−1). It follows
that the right hand side of (14) vanishes, showing that X is extremal. �

7. Holmes-Thompson volumes of projective Finsler metrics

Recall that a norm on a finite-dimensional vector space is called a Minkowski
norm if the unit sphere and its dual are smooth. A Finsler metric on a man-
ifold is a function F : TM → R which is smooth outside the zero-section
such that its restriction to each tangent space TpM,p ∈ M is a Minkowski
norm. A Finsler metric on a vector space V is called projective if straight
lines are geodesics.

Using the Finsler metric on a Finsler manifold, we can measure the length
of a curve in the usual way. However, it is less clear how to measure the
volume of higher-dimensional manifolds, including M itself. One possibility
is to use the Hausdorff measure as definition of volume. This volume, called
the Busemann volume lacks several good properties (compare [11], [8]). In
some contexts, it is better to work with another volume, called the Holmes-
Thompson volume, whose definition we would like to recall.

Note first that T ∗M is a symplectic manifold. The Holmes-Thompson
volume of M is defined as the symplectic volume of the unit codisc bun-
dle D∗M ⊂ T ∗M . Since submanifolds carry induced Finsler metrics, we
can thus measure their Holmes-Thompson volumes. It turns out that the
Holmes-Thompson volume has in many (although not all) respects better
properties than the Busemann volume.

Theorem 4 is another hint that the Holmes-Thompson volume is more
natural than the Busemann volume. Not only do these volumes extend
to smooth valuations, they also behave naturally with respect to Alesker’s
product.

Proof of Theorem 4. The fact that the k-dimensional Holmes-Thompson vol-
ume admits a smooth Crofton formula of degree k was proved in [9]. From
Theorem 1 it follows that it extends to a valuation ΨHT

k of pure degree k

which belongs to the (−1)k-eigenspace of the Euler-Verdier involution.
Uniqueness of the extension follows from Theorem 2. Finally, the equation

ΨHT
k · ΨHT

l = ΨHT
k+l

follows from Theorem 3, since the Crofton measure of the k-dimensional
Holmes-Thompson volume is the k-th power (with respect to the Álvarez-
Fernandes product) of the Crofton measure of the Finsler metric [9]. �

We remark that, in general, the Crofton measure of the k-dimensional
Holmes-Thompson volume in a projective Finsler space need not be positive.
The question under which conditions it is positive seems to be a difficult
one. If the metric is invariant under translations (i.e. a norm on V ), then
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positivity of these measures is equivalent to the metric being a hypermetric
(cf. [27]).

In [26], the Holmes-Thompson valuations are introduced and studied in
the translation invariant case. Their behavior is similar to that of intrinsic
volumes on Euclidean vector spaces.
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