Power laws from randomly sampled continuous-time random walks
-
Mosetti, Giancarlo
ISI Foundation, Torino, Italy - Départment de Physique, Université de Fribourg, Switzerland
-
Jug, Giancarlo
ISI Foundation, Torino, Italy - Dipartimento di Fisica e Matematica, Università dell’Insubria, Como, Italy
-
Scalas, Enrico
ISI Foundation, Torino, Italy - Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Alessandria, Italy
Published in:
- Physica A: Statistical Mechanics and its Applications. - 2007, vol. 375, no. 1, p. 233-238
English
It has been shown by Reed that random-sampling a Wiener process x(t) at times T chosen out of an exponential distribution gives rise to power laws in the distribution P(x(T))~x(T)-β. We show, both theoretically and numerically, that this power-law behaviour also follows by random-sampling Lévy flights (as continuous-time random walks), having Fourier distribution w^(k)=e-|k|α, with the exponent β=α.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/300278
Statistics
Document views: 79
File downloads: