Intermediate Ricci Curvatures and Gromov’s Betti number bound
DOKPE
Published in:
- The Journal of Geometric Analysis. - Springer Science and Business Media LLC. - 2023, vol. 33, no. 12
English
We consider intermediate Ricci curvatures $Ric_k$ on a closed Riemannian manifold $M^n$. These interpolate between the Ricci curvature when $k=n-1$ and the sectional curvature when $k=1$. By establishing a surgery result for Riemannian metrics with $Ric_k>0$, we show that Gromov's upper Betti number bound for sectional curvature bounded below fails to hold for $Ric_k>0$ when $\lfloor n/2 \rfloor+2 \le k \le n-1.$ This was previously known only in the case of positive Ricci curvature.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
CC BY
-
Open access status
-
hybrid
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/326114
Statistics
Document views: 75
File downloads:
- reiser-wraith_intermediatericcicurvaturesandgromovsbettinumberbound.pdf: 113