Journal article

Intermediate Ricci Curvatures and Gromov’s Betti number bound

DOKPE

  • 20.09.2023
Published in:
  • The Journal of Geometric Analysis. - Springer Science and Business Media LLC. - 2023, vol. 33, no. 12
English We consider intermediate Ricci curvatures $Ric_k$ on a closed Riemannian manifold $M^n$. These interpolate between the Ricci curvature when $k=n-1$ and the sectional curvature when $k=1$. By establishing a surgery result for Riemannian metrics with $Ric_k>0$, we show that Gromov's upper Betti number bound for sectional curvature bounded below fails to hold for $Ric_k>0$ when $\lfloor n/2 \rfloor+2 \le k \le n-1.$ This was previously known only in the case of positive Ricci curvature.
Faculty
Faculté des sciences et de médecine
Department
Département de Mathématiques
Language
  • English
Classification
Mathematics
License
CC BY
Open access status
hybrid
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/326114
Statistics

Document views: 75 File downloads:
  • reiser-wraith_intermediatericcicurvaturesandgromovsbettinumberbound.pdf: 113