Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells
DOKPE
Ochoa Martinez, Efrain
ORCID
Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, 1700 Fribourg, Switzerland
Bijani‐Chiquero, Shanti
ORCID
Unidad de Nanotecnología Centro de Supercomputación y Bioinnovación SCBI Universidad de Málaga, Calle Severo Ochoa 34 Campanillas (Málaga) 29590 Spain
Martínez de Yuso, María del Valle
ORCID
Laboratorio de Espectroscopía de Fotoelectrones de Rayos‐X Servicios Centrales de Apoyo a la Investigación de la Universidad de Málaga, Málaga 29071 Spain
Sarkar, Subhrangsu
ORCID
Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3 Fribourg 1700 Switzerland
Diaz‐Perez, Horus
ORCID
Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, 1700 Fribourg, Switzerland; Departamento de Ingeniería Eléctrica Universidad Nacional Autónoma de Honduras, Ciudad Universitaria Tegucigalpa 11101 Honduras
Mejia‐Castellanos, Roberto
ORCID
Departamento de Materia Condensada Escuela de Física, Universidad Nacional Autónoma de Honduras, Ciudad Universitaria Tegucigalpa 11101 Honduras
Eickemeyer, Felix
ORCID
Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
Grätzel, Michael
ORCID
Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
Steiner, Ullrich
ORCID
Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, 1700 Fribourg, Switzerland
Milić, Jovana V.
ORCID
Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, 1700 Fribourg, Switzerland
English
Abstract The industrialization of perovskite solar cells requires adequate materials and processes to make them economically viable and environmentally sustainable. Despite promising results in terms of power conversion efficiency and operational stability, several hole-transport layers currently in use still need to prove their industrial feasibility. This work demonstrates the use of nanocrystalline nickel oxide produced through flash infrared annealing (FIRA), considerably reducing the materials cost, production time, energy, and the amount of solvents required for the hole transport layer. X-ray photoelectron spectroscopy reveals a better conversion to nickel oxide and a higher oxygen-to-nickel ratio for the FIRA films as compared to control annealing methods, resulting in higher device efficiency and operational stability. Planar inverted solar cells produced with triple cation perovskite absorber result in 16.7\% power conversion efficiency for 1 cm2 devices, and 15.9\% averaged over an area of 17 cm2.