Ideal polyhedral surfaces in Fuchsian manifolds
-
Prosanov, Roman
Université de Fribourg, Switzerland - Moscow Institute of Physics and Technology, Dolgoprudny, Russia - Technische Universität Wien Freihaus, Wien, Austria
Published in:
- Geometriae Dedicata. - 2020, vol. 206, no. 1, p. 151–179
English
Let Sg,n be a surface of genus g>1 with n>0 punctures equipped with a complete hyperbolic cusp metric. Then it can be uniquely realized as the boundary metric of an ideal Fuchsian polyhedron. In the present paper we give a new variational proof of this result. We also give an alternative proof of the existence and uniqueness of a hyperbolic polyhedral metric with prescribed curvature in a given conformal class.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/308605
Statistics
Document views: 51
File downloads: