Journal article

Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

  • Berrut, Jean-Paul Département de Mathématiques, Université de Fribourg, Switzerland
  • De Marchi, Stefano Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy
  • Elefante, Giacomo Département de Mathématiques, Université de Fribourg, Switzerland
  • Marchetti, Francesco Dipartimento di Salute della Donna e del Bambino, Università di Padova, Italy
Show more…
    01.05.2020
Published in:
  • Applied Mathematics Letters. - 2020, vol. 103, p. 106196
English In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater–Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in De Marchi et al. (2020). Numerical tests show that it yields an accurate approximation of discontinuous functions.
Faculty
Faculté des sciences et de médecine
Department
Département de Mathématiques
Language
  • English
Classification
Mathematics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/308528
Statistics

Document views: 38 File downloads:
  • ber_tgp.pdf: 132