Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm
-
Berrut, Jean-Paul
Département de Mathématiques, Université de Fribourg, Switzerland
-
De Marchi, Stefano
Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy
-
Elefante, Giacomo
Département de Mathématiques, Université de Fribourg, Switzerland
-
Marchetti, Francesco
Dipartimento di Salute della Donna e del Bambino, Università di Padova, Italy
Show more…
Published in:
- Applied Mathematics Letters. - 2020, vol. 103, p. 106196
English
In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater–Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in De Marchi et al. (2020). Numerical tests show that it yields an accurate approximation of discontinuous functions.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/308528
Statistics
Document views: 38
File downloads: