d-Transversals of stable sets and vertex covers in weighted bipartite graphs
-
Bentz, Cédric
Université Paris-Sud, France
-
Costa, Marie-Christine
ENSTA Paris-Tech, France
-
Picouleau, Christophe
CNAM, France
-
Ries, Bernard
Université Paris-Dauphine, France
-
de Werra, Dominique
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Show more…
Published in:
- Journal of Discrete Algorithms. - Elsevier. - 2012, vol. 17, p. 95-102
English
Let G = (V , E) be a graph in which every vertex v ∈ V has a weight w(v)>=0 and a cost c(v) >=0. Let SG be the family of all maximum-weight stable sets in G. For any integer d 0, a minimum d-transversal in the graph G with respect to SG is a subset of vertices T ⊆ V of minimum total cost such that |T ∩ S| d for every S ∈ SG. In this paper, we present a polynomial-time algorithm to determine minimum d-transversals in bipartite graphs. Our algorithm is based on a characterization of maximum-weight stable sets in bipartite graphs. We also derive results on minimum d-transversals of minimum-weight vertex covers in weighted bipartite graphs.
-
Faculty
- Faculté des sciences économiques et sociales et du management
-
Department
- Département d'informatique
-
Language
-
-
Classification
-
Computer science and technology
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/308009
Statistics
Document views: 36
File downloads: