Spontaneously orbital-selective superconductivity in a three-orbital Hubbard model
-
Ishigaki, Kosuke
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, Japan
-
Nasu, Joji
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, Japan
-
Koga, Akihisa
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, Japan
-
Hoshino, Shintaro
Department of Physics, Saitama University, Saitama, Japan
-
Werner, Philipp
Department of Physics, University of Fribourg, Switzerland
Show more…
Published in:
- Physical Review B. - 2018, vol. 98, no. 23, p. 235120
English
We study a three-orbital Hubbard model with negative Hund's coupling in infinite dimensions, combining dynamical mean-field theory with continuous time quantum Monte Carlo simulations. This model, which is relevant for the description of alkali- doped fullerides, has previously been shown to exhibit a spontaneous orbital-selective Mott phase in the vicinity of the superconducting phase. Calculating the pair potential and double occupancy in each orbital, we study the competition between different homogeneous ordered states and determine the corresponding finite-temperature phase diagram of the model. We identify two distinct types of spontaneous orbital- selective Mott states and show that an orbital-selective s-wave superconducting state with one superconducting and two metallic orbitals is spontaneously realized between the conventional s-wave superconducting phase and these two kinds of spontaneously orbital-selective Mott states.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/307506
Statistics
Document views: 29
File downloads: