Journal article
+ 1 other files
In vivo quantification of mechanical properties of caudal fins in adult zebrafish
-
Puri, Sahil
Physik-Institut, University of Zurich, Switzerland - Institute of Molecular Life Sciences, University of Zurich, Switzerland
-
Aegerter-Wilmsen, Tinri
Institute of Molecular Life Sciences, University of Zurich, Switzerland
-
Jaźwińska, Anna
Department of Biology, University of Fribourg, Switzerland
-
Aegerter, Christof M.
Physik-Institut, University of Zurich, Switzerland - Institute of Molecular Life Sciences, University of Zurich, Switzerland
Show more…
Published in:
- Journal of Experimental Biology. - 2018, vol. 221, no. 4, p. jeb171777
English
Skip to Next SectionThe caudal fins of adult zebrafish are supported by multiple bony rays that are laterally interconnected by soft interray tissue. Little is known about the fin's mechanical properties that influence bending in response to hydrodynamic forces during swimming. Here, we developed an experimental setup to measure the elastic properties of caudal fins in vivo by applying micro-Newton forces to obtain bending stiffness and a tensional modulus. We detected overall bending moments of 1.5×10−9–4×10−9 N m2 along the proximal–distal axis of the appendage showing a non-monotonous pattern that was not due to the geometry of the fin itself. Surgical disruption of the interray tissues along the proximal–distal axis revealed no significant changes to the overall bending stiffness, which we confirmed by determining a tensional modulus of the interray tissue. Thus, the biophysical values suggest that the flexibility of the fin during its hydrodynamic performance predominantly relies on the mechanical properties of the rays.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Biologie
-
Language
-
-
Classification
-
Biological sciences
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/306449
Other files
Statistics
Document views: 34
File downloads:
- jaz_ivq.pdf: 106
- jaz_ivq_sm.pdf: 57