Journal article

On minimal covolume hyperbolic lattices

  • Kellerhals, Ruth Department of Mathematics, University of Fribourg, Switzerland
    22.08.2017
Published in:
  • Mathematics. - 2017, vol. 5, no. 3, p. 43
English We study lattices with a non-compact fundamental domain of small volume in hyperbolic space H n . First, we identify the arithmetic lattices in Isom + H n of minimal covolume for even n up to 18. Then, we discuss the related problem in higher odd dimensions and provide solutions for n = 11 and n = 13 in terms of the rotation subgroup of certain Coxeter pyramid groups found by Tumarkin. The results depend on the work of Belolipetsky and Emery, as well as on the Euler characteristic computation for hyperbolic Coxeter polyhedra with few facets by means of the program CoxIter developed by Guglielmetti. This work complements the survey about hyperbolic orbifolds of minimal volume.
Faculty
Faculté des sciences et de médecine
Department
Département de Mathématiques
Language
  • English
Classification
Mathematics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/306158
Statistics

Document views: 8 File downloads:
  • kel_mch.pdf: 1