Local resilience of the $1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2}$ charge density wave to Ti self-doping
-
Hildebrand, Baptiste
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Jaouen, Thomas
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Didiot, Clément
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Razzoli, Elia
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Monney, Gaël
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Mottas, Marie-Laure
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Vanini, Fabiano
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
-
Barreteau, C.
Department of Quantum Matter Physics, University of Geneva, Switzerland
-
Ubaldini, A.
Department of Quantum Matter Physics, University of Geneva, Switzerland
-
Giannini, E.
Department of Quantum Matter Physics, University of Geneva, Switzerland
-
Berger, Helmuth
Institut de Génie Atomique, Ecole Polytechnique Fédérale de Lausanne, Switzerland
-
Bowler, D. R.
London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, United Kingdom
-
Aebi, Philipp
Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
Show more…
Published in:
- Physical Review B. - 2017, vol. 95, no. 8, p. 081104
English
In Ti-intercalated self-doped 1T−TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1T−TiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/305565
Statistics
Document views: 94
File downloads: