Journal article

Universal breakup of colloidal clusters in simple shear flow

  • Harshe, Yogesh M. Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
  • Lattuada, Marco Chemistry Department and Adolphe Merkle Institute, University of Fribourg, Switzerland
Published in:
  • The Journal of Physical Chemistry B. - 2016, vol. 120, no. 29, p. 7244–7252
English We have studied the long-term dynamics of shear-induced breakage of individual colloidal clusters, covering a wide range of fractal dimensions, using Stokesian dynamics. We found that the time evolution of the normalized average size of the fragments generated by the breakup process could be scaled using a unique dimensionless time defined by multiplying the real time with the cluster breakage rate constant (τ = t·kB). Clusters with different masses but the same fractal dimension exhibited almost identical breakage dynamics when exposed to equal overall hydrodynamic forces (ηγRg,0²). The steady-state values of the average size, mass, and standard deviation of fragment mass distribution showed a universal scaling depending only on the overall hydrodynamic force, irrespective of the initial cluster properties. We also identified two asymptotic regimes for the evolution of the fractal dimension, ⟨df⟩, of fragments: open clusters (d f ≤ 2.1) produced dense fragments with a limiting ⟨df⟩ ≈ 2.4 ± 0.1; conversely, dense clusters (df ≥ 2.5) produced fragments with ⟨df⟩ ≈ 2.5 ± 0.1.
Faculté des sciences et de médecine
Département de Chimie
  • English
License undefined
Persistent URL

Document views: 15 File downloads:
  • lat_ubc.pdf: 64