Electronic orders in multiorbital Hubbard models with lifted orbital degeneracy
Published in:
- Physical Review B. - 2016, vol. 93, no. 15, p. 155161
English
We study the symmetry-broken phases in two- and three-orbital Hubbard models with lifted orbital degeneracy using dynamical mean-field theory. On the technical level, we explain how symmetry relations can be exploited to measure the four-point correlation functions needed for the calculation of the lattice susceptibilities. In the half-filled two- orbital model with crystal-field splitting, we find an instability of the metallic phase to spin-orbital order with neither spin nor orbital moment. This ordered phase is shown to be related to the recently discovered fluctuating-moment induced spin-triplet superconducting state in the orbitally degenerate model with shifted chemical potential. In the three-orbital case, we consider the effect of a crystal-field splitting on the spin- triplet superconducting state in the model with positive Hund coupling, and the spin- singlet superconducting state in the case of negative Hund coupling. It is demonstrated that for certain crystal-field splittings the higher energy orbitals instead of the lower ones are relevant for superconductivity, and that Tc can be slightly enhanced by the crystal-field effect. We comment on the implications of our results for the superconductivity in strontium ruthenates, and for the recently reported light-enhanced superconducting state in alkali-metal-doped fullerides.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/304909
Statistics
Document views: 23
File downloads: