Journal article
+ 1 other files
A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits
-
Monnier, Christophe A.
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Thévenaz, David C.
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Balog, Sandor
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Fiore, Gina L.
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Vanhecke, Dimitri
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Rothen-Rutishauser, Barbara
Adolphe Merkle Institute, University of Fribourg, Switzerland
-
Petri-Fink, Alke
Adolphe Merkle Institute, University of Fribourg, Switzerland - Chemistry Department, University of Fribourg, Switzerland
Show more…
Published in:
- AIMS Biophysics. - 2015, vol. 2, no. 3, p. 245–258
English
Synthetic colloidal nanoparticles are nowadays omnipresent. Nonetheless, adequately characterizing them and interpreting the data is challenging, as their surrounding environment, e.g. the medium they are dispersed in, is often an active contributor to their size, morphology and structural integrity. In this regard, cryo-transmission electron microscopy (cryo-TEM) is an ideal methodology. This article provides a general guidance for beginners and experts encountering this technique on the common benefits and pitfalls when characterizing synthetic nanoparticles. Illustrative experimental examples are presented which cover the importance of water as a supportive and structural component, along with contrast generation and electron beam damage.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Chimie
-
Language
-
-
Classification
-
Chemistry
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/304343
Other files
Statistics
Document views: 76
File downloads:
- fin_gic.pdf: 117
- fin_gic_sm.pdf: 86