A short note on short pants
-
Parlier, Hugo
Department of Mathematics, University of Fribourg, Switzerland
Published in:
- Canadian Mathematical Bulletin. - 2015, vol. 57, no. 4, p. 870–876
English
It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied and the best upper bounds to date are linear in genus, a theorem of Buser and Seppälä. The goal of this note is to give a short proof of a linear upper bound which slightly improve the best known bound.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/304077
Statistics
Document views: 18
File downloads: