Journal article

Hydrophobic hydration of poly-N-isopropyl acrylamide: a matter of the mean energetic state of water

  • Bischofberger, Irmgard University of Fribourg, Department of Physics, Switzerland - University of Chicago, Department of Physics, USA
  • Calzolari, D. C. E. University of Fribourg, Department of Physics, Switzerland
  • Rios, Paolo De Los Ecole Polytechnique Fédérale de Lausanne, Laboratory of Statistical Biophysics, Switzerland
  • Jelezarov, I. University of Zürich, Department of Biochemistry, Switzerland
  • Trappe, Véronique University of Fribourg, Department of Physics, Switzerland
Show more…
    14.03.2014
Published in:
  • Scientific Reports. - 2014, vol. 4, no. 1, p. 4377
English The enthalpically favoured hydration of hydrophobic entities, termed hydrophobic hydration, impacts the phase behaviour of numerous amphiphiles in water. Here, we show experimental evidence that hydrophobic hydration is strongly determined by the mean energetics of the aqueous medium. We investigate the aggregation and collapse of an amphiphilic polymer, poly-N-isopropyl acrylamide (PNiPAM), in aqueous solutions containing small amounts of alcohol and find that the thermodynamic characteristics defining the phase transitions of PNiPAM evolve relative to the solvent composition at which the excess mixing enthalpy of the water/alcohol mixtures becomes minimal. Such correlation between solvent energetics and solution thermodynamics extends to other mixtures containing neutral organic solutes that are considered as kosmotropes to induce a strengthening of the hydrogen bonded water network. This denotes the energetics of water as a key parameter controlling the phase behaviour of PNiPAM and identifies the excess mixing enthalpy of water/kosmotrope mixtures as a gauge of the kosmotropic effect on hydrophobic assemblies.
Faculty
Faculté des sciences et de médecine
Department
Département de Physique
Language
  • English
Classification
Physics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/303753
Statistics

Document views: 40 File downloads:
  • tra_hhp.pdf: 30