Double occupancy and magnetic susceptibility of the Anderson impurity model out of equilibrium
-
Dirks, Andreas
Institut für Theoretische Physik, Universität Göttingen, Germany - Department of Physics, State University of New York at Buffalo, USA - Department of Physics, Georgetown University - Washington, USA
-
Schmitt, S.
Lehrstuhl für Theoretische Physik II, Technische Universität Dortmund, Germany - Honda Research Institute Europe GmbH, Offenbach, Germany
-
Han, J. E.
Department of Physics, State University of New York at Buffalo, USA
-
Anders, F.
Lehrstuhl für Theoretische Physik II, Technische Universität Dortmund, Germany
-
Werner, Philipp
Department of Physics, University of Fribourg, Switzerland
-
Pruschke, Thomas
Institut für Theoretische Physik, Universität Göttingen, Germany
Show more…
Published in:
- EPL (Europhysics Letters). - 2013, vol. 102, no. 3, p. 37011
English
We use different numerical approaches to calculate the double occupancy and magnetic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara voltage quantum Monte Carlo approach (MV-QMC), the scattering states numerical renormalization group (SNRG), and real-time quantum Monte Carlo (RT-QMC), covering Coulomb repulsions ranging from the weak-coupling well into the strong-coupling regime. We observe a distinctly different behavior of the double occupancy and the magnetic response. The former measures charge fluctuations and thus only indirectly exhibits the Kondo scale, while the latter exhibits structures on the scale of the equilibrium Kondo temperature. The Matsubara voltage approach and the scattering states numerical renormalization group yield consistent values for the magnetic susceptibility in the Kondo limit. On the other hand, all three numerical methods produce different results for the behavior of charge fluctuations in strongly interacting dots out of equilibrium.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/303208
Statistics
Document views: 32
File downloads: