Journal article

Effect of Fe composition on the superconducting properties (Tc, Hc2 and Hirr) of FexSe1/2Te1/2 (x = 0.95, 1.00, 1.05 and 1.10)

  • Sudesh Department of Physics, Indian Institute of Technology Roorkee, India
  • Rani, S. Department of Physics, Indian Institute of Technology Roorkee, India
  • Das, Saikat Department of Physics and Fribourg Centre for Nanomaterials-FriMat, University of Fribourg, Switzerland
  • Rawat, R. UGC-DAE C.S.R., University Campus, Indore, India
  • Bernhard, Christian Department of Physics and Fribourg Centre for Nanomaterials-FriMat, University of Fribourg, Switzerland
  • Varma, G. D. Department of Physics, Indian Institute of Technology Roorkee, India
Show more…
    24.02.2012
Published in:
  • Journal of Applied Physics. - 2012, vol. 111, no. 7, p. E119
English In the present work, we have studied the effect of Fe composition on the superconducting properties, such as transition temperature (Tc), upper critical field (Hc2), and irreversibility field (Hirr) of FeSe1/2Te1/2. The polycrystalline samples have been prepared via solid state reaction route with nominal compositions FexSe1/2Te1/2 (x = 0.95, 1.00, 1.05 and 1.10). The x-ray diffraction results show the presence of tetragonal α-FeSe phase with the p4/nmm space group symmetry in all the samples. The zero resistance temperatures, Tczero, measured in zero magnetic field, have been found to be 10.0, 12.4, 12.3, and 11.7 K for x = 0.95, 1.00, 1.05, and 1.10, respectively. The temperature dependence of Hc2(T) and Hirr(T) have been calculated from the magnetoresistance data using the criteria of 90% and 10% of normal state resistivity (ρn) values, respectively. The values of Hc2(0) are 121.3 T, 142.8 T, 82.7 T, and 79.3 T for x = 0.95, 1.00, 1.05, and 1.10, respectively. The possible reasons for the variation of superconducting properties with Fe composition (x) have been described and discussed in this paper.
Faculty
Faculté des sciences et de médecine
Department
Département de Physique
Language
  • English
Classification
Physics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/302489
Statistics

Document views: 8 File downloads:
  • ber_efc.pdf: 2