Journal article
+ 1 other files
Dimensionality control of electronic phase transitions in nickel-Oxide superlattices
-
Boris, A. V.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Matiks, Y.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Benckiser, E.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Frano, A.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Popovich, P.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Hinkov, V.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Wochner, P.
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
-
Castro-Colin, M.
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
-
Detemple, E.
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
-
Malik, Vivek Kumar
Department of Physics, University of Fribourg and Fribourg Center for Nano Materials, Switzerland
-
Bernhard, Christian
Department of Physics, University of Fribourg and Fribourg Center for Nano Materials, Switzerland
-
Prokscha, T.
Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
-
Suter, A.
Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
-
Salman, Z.
Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
-
Morenzoni, E.
Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
-
Cristiani, G.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Habermeier, H.-U.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Keimer, B.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
Show more…
Published in:
- Science. - 2011, vol. 332, no. 6032, p. 937-940
English
The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal lanthanum nickelate (LaNiO₃) and the wide-gap insulator lanthanum aluminate (LaAlO₃) with atomically precise layer sequences. We used optical ellipsometry and low-energy muon spin rotation to show that superlattices with LaNiO₃ as thin as two unit cells undergo a sequence of collective metal-insulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO₃ layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/301969
Other files
Statistics
Document views: 49
File downloads:
- ber_dce.pdf: 98
- ber_dce_sm.pdf: 70