Journal article

Modulated 3D cross-correlation light scattering: Improving turbid sample characterization

    30.12.2010
Published in:
  • Review of Scientific Instruments. - 2010, vol. 81, no. 12, p. 123107
English Accurate characterization using static light scattering (SLS) and dynamic light scattering (DLS) methods mandates the measurement and analysis of singly scattered light. In turbid samples, the suppression of multiple scattering is therefore required to obtain meaningful results. One powerful technique for achieving this, known as 3D cross-correlation, uses two simultaneous light scattering experiments performed at the same scattering vector on the same sample volume in order to extract only the single scattering information common to both. Here we present a significant improvement to this method in which the two scattering experiments are temporally separated by modulating the incident laser beams and gating the detector outputs at frequencies exceeding the timescale of the system dynamics. This robust modulation scheme eliminates cross-talk between the two beam-detector pairs and leads to a fourfold improvement in the cross-correlation intercept. We measure the dynamic and angular-dependent scattering intensity of turbid colloidal suspensions and exploit the improved signal quality of the modulated 3D cross-correlation DLS and SLS techniques.
Faculty
Faculté des sciences
Department
Physique
Language
  • English
Classification
Physics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/301853
Statistics

Document views: 10 File downloads:
  • sch_mcc.pdf: 2