First applications of a formula for the error of finite sinc interpolation
Published in:
- Numerische Mathematik. - 2009, vol. 112, no. 3, p. 341-361
English
In former articles we have given a formula for the error committed when interpolating a several times differentiable function by the sinc interpolant on a fixed finite interval. In the present work we demonstrate the relevance of the formula through several applications: correction of the interpolant through the insertion of derivatives to increase its order of convergence, improvement of the barycentric formula, rational sinc interpolants (with and without replacement of the (usually unknown) derivatives with finite differences), convergence acceleration through extrapolation and improvement of one-sided interpolants.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/301384
Statistics
Document views: 27
File downloads:
- Numer._Math._2009_.pdf: 68