Coxeter polytopes with a unique pair of non-intersecting facets
Published in:
- Journal of Combinatorial Theory, Series A. - 2009, vol. 116, no. 4, p. 875-902
English
We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d+3 facets. In view of results by Kaplinskaja [I.M. Kaplinskaya, Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces, Math. Notes 15 (1974) 88–91] and the second author [P. Tumarkin, Compact hyperbolic Coxeter n-polytopes with n+3 facets, Electron. J. Combin. 14 (2007), R69, 36 pp.], this implies that compact hyperbolic Coxeter polytopes with a unique pair of non-intersecting facets are completely classified. They do exist only up to dimension 6 and in dimension 8.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/301259
Statistics
Document views: 40
File downloads: