Optical response of ferromagnetic YTiO₃ studied by spectral ellipsometry
-
Kovaleva, N. N.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Boris, A. V.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Yordanov, P.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Maljuk, A.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Brücher, E.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Strempfer, J.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Konuma, M.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Zegkinoglou, I.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
-
Bernhard, Christian
Department of Physics, University of Fribourg, Switzerland
-
Stoneham, A. M.
Department of Physics and Astronomy, University College London, United Kingdom
-
Keimer, B.
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
Show more…
Published in:
- Physical Review B: Condensend Matter and Materials Physics. - 2007, vol. 76, no. 15, p. 155125
English
We have studied the temperature dependence of spectroscopic ellipsometry spectra of an electrically insulating, nearly stoichiometric YTiO₃ single crystal with ferromagnetic Curie temperature TC=30 K. The optical response exhibits a weak but noticeable anisotropy. Using a classical dispersion analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV. Although the optical conductivity spectra are only weakly temperature dependent below 300 K, we are able to distinguish high- and low-temperature regimes with a distinct crossover point around 100 K. The low-temperature regime in the optical response coincides with the temperature range in which significant deviations from a Curie-Weiss mean-field behavior are observed in the magnetization. Using an analysis based on a simple superexchange model, the spectral weight rearrangement can be attributed to intersite d i¹d j¹→d i² d j⁰ optical transitions. In particular, Kramers-Kronig consistent changes in optical spectra around 2.9 eV can be associated with the high-spin-state (³T₁) optical transition. This indicates that other mechanisms, such as weakly dipole-allowed p-d transitions and/or exciton-polaron excitations, can contribute significantly to the optical band at 2 eV. The recorded optical spectral weight gain of the 2.9 eV optical band is significantly suppressed and anisotropic, which we associate with complex spin-orbit-lattice phenomena near the ferromagnetic ordering temperature in YTiO₃.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Biological sciences
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/300599
Statistics
Document views: 56
File downloads: