Valuations on manifolds and Rumin cohomology
-
Bernig, Andreas
Département de Mathématiques, Université de Fribourg, Switzerland
-
Bröcker, Ludwig
Mathematisches Institut, Universität Münster, Germany
Published in:
- Journal of Differential Geometry. - 2007, vol. 75, no. 3, p. 433-457
English
Smooth valuations on manifolds are studied by establishing a link with the Rumin-de Rham complex of the co-sphere bundle. Several operations on differential forms induce operations on smooth valuations: signature operator, Rumin-Laplace operator, Euler-Verdier involution and derivation operator. As an application, Alesker’s Hard Lefschetz Theorem for even translation invariant valuations on a finite-dimensional Euclidean space is generalized to all translation invariant valuations. The proof uses Kaehler identities, the Rumin-de Rham complex and spectral geometry.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Mathématiques
-
Language
-
-
Classification
-
Mathematics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/300422
Statistics
Document views: 69
File downloads: