Journal article

Intracellular sterol transport in eukaryotes, a connection to mitochondrial function ?

  • Schneiter, Roger Department of Medicine, Division of Biochemistry, University of Fribourg, Switzerland
Published in:
  • Biochimie. - 2007, vol. 89, no. 2, p. 255-259
English Eukaryotic cells synthesize sterols in the endoplasmatic reticulum (ER) from where it needs to be efficiently transported to the plasma membrane, which harbors not, vert, similar90% of the free sterol pool of the cell. Sterols that are being taken up from the environment, on the other hand, are transported back from the plasma membrane to the ER, where the free sterols are esterified to steryl esters. The molecular mechanisms that govern this bidirectional movement of sterols between the ER and the plasma membrane of eukaryotic cells are only poorly understood. Proper control of this transport is important for normal cell function and development as indicated by fatal human pathologies such as Niemann Pick type C disease and atherosclerosis, which are characterized by an over-accumulation of free sterols within endosomal membranes and the ER, respectively. Recently, a number of complementary approaches using Saccharomyces cerevisiae as a model organism lead to a more precise characterization of the pathways that control the subcellular transport of sterols and led to the identification of components that directly or indirectly affect sterol uptake at the plasma membrane and its transport back to the ER. A genetic approach that is based on the fact that yeast is a facultative anaerobic organism, which becomes auxotrophic for sterols in the absence of oxygen, resulted in the identification of 17 genes that are required for efficient uptake and/or transport of sterols. Unexpectedly, many of these genes are required for mitochondrial functions. A possible connection between mitochondrial biogenesis and sterol biosynthesis and uptake will be discussed in light of the fact that cholesterol transport into the inner membranes of mitochondria is a well established sterol transport route in vertebrates, where it is required to convert cholesterol into pregnenolone, the precursor of steroids.
Faculté des sciences et de médecine
Département de Biologie
  • English
Biological sciences
License undefined
Persistent URL

Document views: 53 File downloads:
  • schneiter_ict.pdf: 92