Ward identity and optical conductivity sum rule in the d-density wave state
-
Benfatto, Larra
Theoretical Physics Group, Physics Department, University of Fribourg, Switzerland
-
Sharapov, S. G.
Istituto Nazionale per la Fisica della Materia (INFM), Institute for Scientific Interchange, Torino, Italy
-
Andrenacci, N.
Institut de Physique, Université de Neuchâtel, Switzerland
-
Beck, Hans
Institut de Physique, Université de Neuchâtel, Switzerland
Show more…
Published in:
- Physical Review B. - 2005, vol. 71, no. 10, p. 104511
English
We consider the role of the Ward identity in dealing with the transport properties of an interacting system forming a d-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled approximation for the current-current correlation function which allows us also to determine analytically the corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting model and in the effective mean-field Hamiltonian, we propose a nonstandard low-energy sum-rule for this system. We also discuss the possible applicability of these results for the description of cuprate superconductors in the pseudogap regime.
-
Faculty
- Faculté des sciences et de médecine
-
Department
- Département de Physique
-
Language
-
-
Classification
-
Physics
-
License
-
License undefined
-
Identifiers
-
-
Persistent URL
-
https://folia.unifr.ch/unifr/documents/300016
Statistics
Document views: 59
File downloads: