Journal article

From swimming to walking with a salamander robot driven by a spinal cord model.

  • Ijspeert AJ School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 14, CH-1015 Lausanne, Switzerland. auke.ijspeert@epfl.ch
  • Crespi A
  • Ryczko D
  • Cabelguen JM
Show more…
  • 2007-03-10
Published in:
  • Science (New York, N.Y.). - 2007
English The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.
Language
  • English
Open access status
green
Identifiers
Persistent URL
https://folia.unifr.ch/global/documents/102312
Statistics

Document views: 16 File downloads:
  • fulltext.pdf: 0