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Giacomo Vaccarioa, Matúš Medob,c,d, Nicolas Widera,
Manuel Sebastian Marianid,e,∗

a Chair of Systems Design, ETH Zurich, 8092 Zurich, Switzerland
b Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
c Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
d Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
e Guangdong Province Key Laboratory of Popular High Performance Computers, College of Computer Science and Software Engineering,

Shenzhen University, Shenzhen 518060, PR China

Keywords:

Impact indicators

Ranking

Network analysis

Field bias

Field normalization

It is widely recognized that citation counts for papers from different fields cannot be

directly compared because different scientific fields adopt different citation practices. Cita-

tion counts are also strongly biased by paper age since older papers had more time to

attract citations. Various procedures aim at suppressing these biases and give rise to new

normalized indicators, such as the relative citation count. We use a large citation dataset

fromMicrosoft Academic Graph and a new statistical framework based on theMahalanobis

distance to show that the rankings bywell known indicators, including the relative citation

count and Google’s PageRank score, are significantly biased by paper field and age. Our

statistical framework to assess ranking bias allows us to exactly quantify the contributions

of each individual field to the overall bias of a given ranking. We propose a general nor-

malization procedure motivated by the z-score which produces much less biased rankings

when applied to citation count and PageRank score.

1. Introduction

Paper citation count itself and various quantities derived from it are used as influential indicators of research impact
(Garfield, 2006; Hirsch, 2005). At the same time, it is well known that the cumulative number of citations received by
academic publications strongly depends on paper age and field (Schubert & Braun, 1986; Vinkler, 1986). Old papers have
hadmore time to acquire citations than recent ones, and their advantage is further enhanced by the preferential attachment
mechanism (de Solla Price, 1976; Newman, 2009). While heterogeneous paper fitness and paper aging possibly attenuate
the advantage of old nodes (Medo, Cimini, & Gualdi, 2011;Wang, Song, & Barabási, 2013), empirical evidence typically shows
that citation count is still biased toward old nodes (seeMariani, Medo, & Zhang, 2016; Newman, 2009; Radicchi & Castellano,
2011, among others). In addition, different academic fields adopt very different citation practices (see Bornmann & Daniel,
2008 for a review on the topic), which results in a strong dependence of the mean number of citations on academic field, as
shown in several works (Bornmann & Daniel, 2009; Lundberg, 2007; Radicchi, Fortunato, & Castellano, 2008, among others).
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A natural question arises: how can we  “fairly” use citation-based indicators to  compare papers from different fields and of
different age? The problem of comparing papers from different fields is usually referred to as the field-normalization problem.
Several approaches to address this question have been proposed in the literature (see Waltman, 2016 for a  recent review). A
particularly simple approach is  to divide each paper’s citation count by the mean number of citations for papers of the same
field published in the same year. The results by Radicchi et al. (2008) suggested that this indicator, called relative citation
count, produces a  ranking that is  statistically consistent with the hypothesis of a ranking that is not biased by field and age.
This finding has been challenged by subsequent works by Albarrán, Crespo, Ortu no, and Ruiz-Castillo (2011) and Waltman,
van Eck, and van Raan (2012), which leaves the debate on age- and field-normalization procedures still open.

In  this article, we  analyze a  large dataset from Microsoft Academic Graph (Sinha et al., 2015) to show that existing
indicators  of impact, including the relative citation count, fail to  produce rankings that are not biased by age and field. To
simultaneously assess these biases, we present a new procedure based on the Mahalanobis distance (Mahalanobis, 1936).
This permits to compare the ranking by  a  given indicator with those obtained with a  simulated unbiased sampling, and hence
to quantify the overall ranking bias. An analytic result derived in  this paper allows us to assess the contribution of each field
to the overall ranking bias. It  is  worth noticing that while we  focus on the biases by age and field, our bias assessment
procedure  can be easily extended to detect any other kind of information bias.

We also present the first systematic study of the possible bias by field of the PageRank score (Brin & Page, 1998) and
of its age-rescaled version introduced by  Mariani et al. (2016) at article-level. The motivation to  analyze these network-
based indicators comes from the finding that they outperform other metrics in  identifying expert-selected milestone papers
(Mariani et al., 2016). However, the application of PageRank and its variants to academic citation networks focused on
datasets composed of papers from a single field (Chen, Xie, Maslov, & Redner, 2007; Mariani et al., 2016; Mariani, Medo,
& Zhang, 2015; Walker, Xie, Yan, & Maslov, 2007; Yao, Wei, Zeng, Fan, &  Di, 2014; Zhou, Zeng, Fan, & Di, 2016). While
the possible bias by scientific field of eigenvector-based algorithms has been explored by Waltman and van Eck (2010) at
journal-level, the PageRank score’s possible bias by  academic field at article-level is (to our  best knowledge) still unexplored
and we are the first authors to  address it.

We introduce two novel indicators of impact motivated by the z-score: age- and field-rescaled citation count RAF(c)  and
age- and field-rescaled PageRank RAF(p).  We find that the novel indicators produce paper rankings that are much less biased
by age and field than the rankings produced by  the other analyzed indicators. Nevertheless, also the Mahalanobis distance
observed for the new indicators is not statistically consistent with ones obtained for a  simulated unbiased process. This
indicates that the problem of achieving an ideal unbiased ranking of the publications remains open.

The  rest of our article is  organized as follows: Section 2 describes the analyzed dataset of publications obtained from
the Microsoft Academic Graph. Section 3 presents existing paper-level impact indicators and reports their bias by scientific
field. In Section 4, we  introduce a  rescaling procedure for citation count and PageRank scores motivated by the z-score. In
Section 5, we introduce a  general procedure to  test for any kind of ranking bias, and present its application to assess the field
and age bias of the rankings by the indicators studied here. In Section 6, we conclude by discussing possible limitations of
our analysis and future research directions.

2. Data

We  analyze a bibliographic dataset which was provided for the KDD Cup 2016.1 This data is  a  dump of the Microsoft
Academic Graph (MAG) and contains more than 126 millions of publications and more than 467 millions citations (Sinha
et al., 2015). Each publication is  also endowed with various properties such as unique ID, publication date, title and journal
ID. We  pre-processed the data (details are provided in  Appendix A) to remove from the analysis papers with incomplete
information,  ending up with N = 18 193 082 unique publications and E =  109 719 182 citations.

The MAG  has a  field classification at paper level (Sinha et al., 2015). In  the KDD cup  dump, there are  19 main fields and
numerous subfields up to  3 hierarchical levels of subsubfields. However, all the different subfields can belong to several
main fields, meaning that  each publication can belong to more than one main field. We use here the field classification at
the highest hierarchical level, i.e., we only consider the 19 main fields. When calculating the citation count and PageRank
score of papers (see Section 3), we  consider the publications that belong to more than one field only once. In this way, we do
not modify the number of citations that each paper receives and gives, and we do  not change the topology of the network
on which the PageRank scores are calculated. On the other hand, in  agreement with Waltman et al. (2012), to compute
the fields’ size (see Table A.2 in  Appendix A) and the field-rescaled metrics (see Sections 3 and 4), each publication can be
considered multiple times in the analysis, once for each field the publication belongs to. In this way, each field is represented
by all its publications even if some of these are shared with other fields.

Before moving to  the next Sections, we  devote our attention to  two main assumptions of our analysis. First, we assume
that the Microsoft Academic data provide a representative sample of the population of publications and of their citations. This
assumption is motivated by the findings of independent analyses of the Microsoft Academic dataset (Harzing & Alakangas,
2013; Hug & Braendle, 2017) that have shown that its coverage is comparable to other popular academic databases, such as
Scopus and Web  of Science.

1 https://kddcup2016.azurewebsites.net/Data
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Second, to quantify the bias by field of impact indicators, we  assume that the fields are given by the Microsoft Academic’s
field classification scheme at its highest hierarchical level. In the literature, there is  no general agreement on which field
classification scheme should be used to classify papers and there is  an entire stream of works investigating issues related to
this (Adams, Gurney, & Jackson, 2008; Colliander & Ahlgren, 2011; Radicchi & Castellano, 2012a; Sirtes, 2012; Zitt, Ramanana-
Rahary, & Bassecoulard, 2005). In particular, the choice of a  suitable aggregation level has been shown to  be delicate:
by considering the most aggregate fields, heterogeneities in  the subfields’ citation patterns might be  hidden (Radicchi &
Castellano, 2011; van Leeuwen & Medina, 2012) – this effect has been shown to be magnified when iterative ranking
algorithms are used instead of citation count (Waltman, Yan, & van Eck, 2011). On the other hand, increasing the resolution
of the field classification may  lead to  largely-overlapping fields or to hardly interpretable fields. For example, Hug, Ochsner,
and Brandle (2017) show that the MAG  fields at the second highest level are too detailed and, for this reason, the authors
suggest that they should not be used for field-normalization purposes. We leave to future research the important study of
how different classification schemes impact the biases of rankings and how our  results generalize to other data sets.

3. Shortcomings of existing metrics

We now define the four existing metrics analyzed in this work: citation count c, relative citation count cf,  PageRank score
p, age-rescaled PageRank score RA(p)  (Section 3.1). Furthermore, we show that these metrics are severely biased by scientific
field (Section 3.2).

3.1.  Definition of existing metrics

Citation count, c.  The citation count ci of node i is simply the number of citations received by paper i.  In terms of the citation
network’s adjacency matrix A (in a directed network, Aij = 1 if node j points to node i,  Aij =  0 otherwise), we  can express the
citation count as ci =

∑
jAij.

Relative citation count, cf.  To overcome citation count’s bias by paper age and academic field, Radicchi et al. (2008) defined

the relative citation count cf
i
of paper i as cf

i
:= ci/�Y

i
(c),  where �Y

i
(c) denotes the mean citation count for papers published

in  the same field and year as paper i. Throughout this paper, we  always refer to the 19 main fields provided in  the MAG
dataset.

PageRank, p. Citation count and metrics built on it share an important limitation: the citations a paper receives are all
counted the same, regardless of the importance of the citing paper. A possible way  to  overcome this limitation – recognized
already in the 70s in the scientometrics community (Pinski & Narin, 1976) – is  to  take into account the whole structure of
the paper-paper citation network. In this spirit, eigenvector-based metrics take as input the citation network’s adjacency
matrix A. This class of metrics have been applied in  various research domains including scientometrics (Bergstrom, West,
& Wiseman, 2008; Pinski & Narin, 1976), Web  information retrieval (Brin & Page, 1998; Kleinberg, 1999), social science
(Bonacich, 1987; Katz, 1953) – see (Ermann, Frahm, & Shepelyansky, 2015; Franceschet, 2011; Gleich, 2015) for a  review.
Among these metrics, we focus on Google’s PageRank score (Brin & Page, 1998). This was originally devised to rank webpages
in the World Wide Web  and has attracted considerable interest of the scientometrics community. The rationale behind its
application to  citation networks is that citations coming from influential papers should count more than citations from
obscure articles.

The  PageRank scores of papers are  contained in a  vector p  defined by the following equation

p =  ̨ P p  + (1  − ˛)v, (1)

where  ̨ is a  parameter of the algorithm (called damping factor), P is the random-walk transition matrix with elements
Pij = Aij/kout

j
,  kout

j
=

∑
lAlj is the number of references in paper j,  and v is  a uniform teleportation vector with elements

vi = 1/N for all papers i.  Eq. (1) can be interpreted as the stationary equation of a stochastic process on the citation network.
In  this process, a  random walker is placed on each paper and he/she either follows a  citation edge with probability ˛,  or
jumps to a  randomly chosen paper with probability 1 − ˛. When the number of walkers on each paper reaches a  stationary
value, we obtain the PageRank score of a  paper i by calculating the fraction of walker on this paper. There is  no universal
criterion  to  choose the value of the damping factor ˛. In agreement with Chen et al. (2007), we set  ̨=  0.5 which corresponds
to a random walker covering paths of length two  before teleporting to  a  random node, as opposed to paths of length close to
seven expected with the often used value  ̨= 0.85. Chen et al. (2007) argue that the choice  ̨= 0.5 better reflects the actual
surfing behavior of researchers than  ̨= 0.85.

PageRank is based on a static, time-aggregated perspective of the considered network. In general, such perspective has
been shown to be limiting for the analysis of evolving networks (Mariani et al., 2015; Scholtes, Wider, Pfitzner, Garas, Tessone,
& Schweitzer, 2014b, Wider, et al., 2014). While the resulting metric’s bias towards old papers has already been studied in
the literature (Chen et al., 2007; Mariani et al., 2015, 2016; Maslov &  Redner, 2008), its possible bias by academic field is  still
unexplored and we address it in  Section 3.2.

Age-rescaled PageRank, RA(p). To suppress the age bias of PageRank, Mariani et al. (2016) proposed to rescale the PageRank
score by comparing each paper’s score with the scores of papers of similar age. Assuming that the papers are ordered by
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Fig. 1. Field bias of the analyzed citation-based metrics. Top  panels show histograms of the fraction of top-1% publications for each field in the ranking by

(left  to right) citation count and relative citation count. The black horizontal line is  at  0.01, i.e. the expected value. Bottom panels show for each field the

complementary  cumulative distributions for citation count (left) and relative citation count (right).

older to younger, one computes the mean value �A
i
(p)  and the standard deviation �A

i
(p)  of PageRank scores over �p papers

around i, i.e. j ∈ [i  −  �p/2,  i +  �p/2]. Consequently, the rescaled PageRank score RA
i
(p)  of paper i  is defined as

RA
i (p) = pi − �A

i
(p)

�A
i
(p)

.  (2)

Mariani et al. (2016) applied rescaled PageRank to  the network of physics papers published by the American Physical
Society journals to  show that the resulting ranking is  not biased by paper age and, as a  result, it allows us to  identify seminal
publication much earlier than rankings by  metrics that are biased against recent papers. In the following, we  set �p =  1000
as in Mariani et al. (2016).

3.2.  Field bias of the existing metrics

After having described a set of existing metrics, we now apply them to the MAG dataset to show that the rankings that
they produce are  biased by scientific field. For a  ranking that is not biased by scientific field, the number of top-ranked
publications  from each field should be proportional to the total number of publications from that field. In other words, for
an unbiased ranking, we  expect

�f = z

100
Kf (3)

papers from field f  among the top z% papers in the ranking, where Kf is  the total number of publications from field f  (Radicchi

et al., 2008). In the following, we denote by k(m)
f

the number of publications from field f in  the top-1% of the ranking by metric

m. We  restrict our analysis to  z % =1%; results for other values of z are available upon request from the authors.
In  the top panels of Fig. 1,  we illustrate the field bias of citation count, c, and relative citation count, cf.  The presence of

strong biases is evident for both metrics because there are fields whose ratio k(m)
f

/Kf is far away from the expected value

0.01. In particular, Environmental Science is extremely over-represented in the top of the ranking by citation count. We
argue that this bias comes from the fact that publications from this field have a  mean citation count almost twice as big
compared to publications belonging to other fields (see Table A.2). For relative citation count, we find a better agreement
with what we would expect from an unbiased indicator. However, relatively large deviations are  still evident, especially for
the field of Political Science.

In  the bottom panels of Fig. 1, we report the distributions of c and cf for each field. These panels show that the bias
by  field is not  limited to  the top 1% papers in the ranking, but it arises from systematic differences between the score
distributions across different fields. For example, when looking at the distribution of c,  papers in the field of Political Science
have consistently smaller probability to  have more than one citation compared to  other fields. For  a detailed discussion
about the bias of the ranking by cf,  we  refer to Appendix C.

Fig. 2 reports the same analysis for PageRank scores, p, and age-rescaled PageRank scores, RA(p).  This figure provides the
first study of the dependence of PageRank score on academic field. The top panels of Fig. 2 show that the top positions of both
rankings are biased by  field, and both rankings overestimate the impact of publications in the field of Environmental Science.
Again, we argue that this happens because the mean indegree of publications from Environmental Science is  approximately
twice as big compared to publications that belong to other fields (see Table A.2). From the bottom-left panel of Fig. 2,  we  find
that the full distribution of scores of Page Rank have a  similar shape, but different broadness. These differences are slightly
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Fig. 2. Field bias of the analyzed measures based on PageRank. Top panels show histograms of the fraction of top-1% publications for each field in the

ranking  by (left to right): PageRank and age-rescaled PageRank. The black horizontal line is at 0.01, i.e. the expected value. Bottom panels show for each

field  the complementary cumulative distributions for PageRank (left) and age-rescaled PageRank (right).

smaller for the age-rescaled PageRank, with the exception of the field of Environmental Science (see bottom right panel of
Fig. 2).

4.  Defining new age- and field-normalized metrics

In  this section, we  introduce two novel indicators of paper impact: the age- and field-rescaled citation count, RAF(c),
and the age- and field-rescaled PageRank, RAF(p).  The two  indicators, RAF(c)  and RAF(p), are obtained from citation count
c and PageRank score p, respectively, through a  rescaling procedure. This procedure is  based on the z-score and is aimed
at suppressing age and field bias. The idea of using the z-score is  not  new in scientometrics (Bornmann & Daniel, 2009;
Lundberg, 2007; Mariani et al., 2016; McAllister, Narin, & Corrigan, 1983; Newman, 2009; Zhang, Cheng, & Liu, 2014); our
new indicators can be considered as variants of the indicator based on the z-score studied by Zhang et al. (2014) and their
main difference is explained below.

4.1. Age- and field-rescaled citation count, RAF(c)

To calculate the age- and field-rescaled citation count RAF
i
(c) of a paper i belonging to a field f, we first compute the mean

�AF
i
(c) and the standard deviation �AF

i
(c)  of the citation count of papers of the same field and of similar age as paper i.  In

particular, �AF
i
(c) and �AF

i
(c) are computed over the papers that belong to the same field f as paper i and that are among the

�c closest papers to i as measured by  the distance |i − j| between their rank by age. Then, the age- and field-rescaled citation
count score RAF

i
(c) is defined as

RAF
i (c) = ci − �AF

i
(c)

�AF
i
(c)

.  (4)

The averaging window size �c is  a  parameter of the method, which we set to �c =  1000.
Differently  from Zhang et al. (2014), for the computation of the z-score, we use temporal windows with the same number

of publications, which in  general corresponds to real-time intervals of different duration. This choice is supported by recent
findings (Parolo et al., 2015) that indicate that in citation networks, time is  better defined by number of publications than
by real time. Furthermore, rescaled metrics based on the z-score with fixed temporal-window duration have already been
shown to underperform with respect to  the relative citation count cf in  the task of producing an unbiased ranking (Zhang
et al., 2014). Our analysis (not shown) confirms that when the temporal windows are of a fixed temporal length, the bias
removal is inferior to  that achieved with temporal windows containing a  fixed number of publications. For these reasons,
we do not include metrics based on z-score with fixed temporal-window duration in our analysis.

Differently from the relative citation count cf, RAF(c) is expected to  have not  only uniform mean value across different
publication dates and fields, but also uniform standard deviation. This should lead to a  more balanced ranking of the papers.
We show in  the following that this is indeed the case.
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Fig. 3. Field balance of the analyzed citation-count and PageRank-based metrics. Top panels show histograms of the  number of top-1% publications for

each  field in the ranking by (left to  right): age- and field-rescaled citation count, and age- and field-rescaled PageRank. The black horizontal line is  at 0.01,

i.e.  the expected value. Bottom panels show for each field the complementary cumulative distributions for age- and field-rescaled citation count (left), and

age-  and field-rescaled PageRank (right).

4.2. Age- and field-rescaled PageRank, RAF(p)

Previous  works have shown that PageRank is  biased towards old papers in  scientific citation networks (Chen et al., 2007;
Mariani et al., 2015; Maslov & Redner, 2008). Moreover, we have shown in  Section 3 that PageRank score p  is biased by
scientific domain. To simultaneously suppress these two biases, we propose the age- and field-rescaled PageRank score
RAF(p). RAF(p) is  defined similarly as RAF(c): we compute the mean value �AF

i
(p)  and the standard deviation �AF

i
(p)  of the

PageRank scores of the papers that belong to  the same field as paper i and that are among the �p closest papers to  i as
measured by the distance |i −  j|  between their rank by age. The age- and field-rescaled PageRank score is  then defined as

RAF
i (p) = pi − �AF

i
(p)

�AF
i
(p)

.  (5)

In the following, we set �p = 1000.

4.3.  Field bias of the new metrics

In the top panels of Fig. 3,  we  show that in the top-1% of the rankings by RAF(p)  and RAF(c)  each field appears well
represented.  In fact, the deviations from the expected value are very small especially if compared to the deviations of the
other rankings (see top panels in  Figs. 1 and 2). In the bottom panels of Fig. 3, we report that the full score distributions for
papers from different fields collapse extremely well top of each other thanks to the rescaling procedure.

5.  Quantifying rankings’ biases by field and age

We  begin this Section by introducing a  new methodology to assess a ranking’s bias based on  the Mahalanobis distance
(Section 5.1). Then, we use this to  quantify the bias by field (Section 5.2) and the bias by age and field (Section 5.3).

5.1. A general framework to assess ranking biases based on the Mahalanobis distance

While Figs. 1 and 2 illustrate the substantial field bias of the existing metrics, the bias is  much weaker (if  any) for the
new age- and field-rescaled metrics in Figure 3 . Now we quantify this improvement by extending the statistical tests of bias
suppression presented by Mariani et al. (2016), Radicchi and Castellano (2012b), Radicchi et al. (2008), Waltman et al. (2012).
Similarly to these works, we assume that a  ranking is  unbiased if its properties are consistent with those of an unbiased
selection process.

5.1.1.  Assessing the bias by field
Let us first analyze the problem of assessing the bias by field. Consider an urn which contains N marbles, each of them

corresponding to one of the publications present in our dataset. An unbiased selection process then corresponds to  sampling
from this urn at random without replacement a  fixed number n =  �N × 0.01� of publications. From the extracted sample, we
count the number of publications that belong to each field f,  kf, and record these numbers in the vector �k = (k1, . . ., kF )

T ; here
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Fig. 4. Mahalanobis distances, dM , for the analyzed indicators when considering the 19 main fields. From left to  right: citation count, relative citation count,

PageRank,  age-rescaled PageRank, age- and field-rescaled citation count and age- and field-rescaled PageRank. The horizontal red  line represents the upper

bound  of the 95% confidence interval obtained from the simulations. In the insets, we  report the distribution of dM coming from 1 000 000 simulations of

the  unbiased sampling process. Again, the red line represents the upper bound of the 95% confidence interval. (For  interpretation of the references to color

in  this figure legend, the reader is  referred to  the web  version of the article.)

F denotes the number of fields. The probability to  observe a  certain vector, �k,  is  given by the multivariate hypergeomentric
distribution  (MHD)

P
(�k

)
=

∏F
f

(
Kf

kf

)
(

N

n

) (6)

where Kf is  the total number of publications in  field f. Following this selection process, among the n extracted publications,
the expected number of publications for field f is  �f = n Kf/N.

Assume  that the actual ranking by  a  given metric m features k(m)
f

publications from field f  in the top 1% of its ranking. In

general, the observed k(m)
f

deviates from its expected value �f. A simple approach to quantify this deviation would consist

in computing the z-score, defined as z(m)
f

:=  (k(m)
f

− �f )/�f ,  where �f is  the expected standard deviation for field f  according

to  the MHD  specified by Eq. (6). There are however two shortcomings of the z-score. First, the z-score only gives partial
information for a  MHD  – how far from the expected values we are in  units of standard deviations – but it does not  provide
information on how statistically significant the deviations are. Second, to  quantify the overall bias of a  given indicator m,
we would need to aggregate the z-scores from the different fields. For  example, we could take the average z-score, but  this

would neglect the correlation between the different fields coming from the constraint n =
∑

f k(m)
f
.

To  overcome these two problems, we follow a different approach. We  first run various numerical simulations that repro-
duce the unbiased selection process. These simulations produce a set of ranking vectors which are  distributed according
to Eq. (6) around the vector of expected values, �� = (�1, . . .,  �m). Differently from (Radicchi & Castellano, 2012b), we  do
not estimate the confidence interval for the different fields separately. We calculate instead the Mahalanobis distance (dM,
Mahalanobis (1936) and Appendix B) for each simulated vector from ��,  and construct the distribution of dM’s obtained by
the simulated unbiased selection process. The inset of the left panel of Fig. 4 reports the distribution of the dM for 1 000 000
simulations. The distribution is  centered around its mean value of 4.18 and the upper bound for the 95% confidence level is
around 5.37. 2 For an ideal unbiased ranking, we would expect its dM to fall into the 95% confidence interval of the distribution
of the dM obtained from the simulated unbiased sampling process.

5.1.2. Assessing the bias by  age and field
The methodology presented above is easily generalized to simultaneously assess a  ranking’s bias by age and field.
To add the temporal dimension to  the bias assessment procedure, we split the publications into T equally-sized age groups,

and repeat the above analysis by using F  ×  T  different categories of publications. In  Section 5.3, we  set F  =  19 representing
the  number of fields and T  =  40 as in (Mariani et al., 2016), and thus we obtain 760 age-field groups of different sizes.

2 A curiosity for the reader. Here, the average of the square of the  dM for the unbiased sampling process is extremely close to  the number of degrees of

freedom  of our problem. This  stems from the fact that the MHD defined by Eq. (6)  converges to  a  Multivariate Gaussian Distribution (MGD) as we increase

the  number of publications N  while keeping n/N fixed and small. Our dataset is large enough for this approximation to be accurate. The d2M of a  MGD  is

distributed  as a �2 variable with average equal to the number of degrees of freedom, i.e. 18 since we have 19 distinct fields and one constraint.
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Table  1

The  individual contribution z2
i
(1 − ki/N) of each field i to the dM of the different metrics.

Field c cf p RA(p) RAF(c) RAF(p)

Art 1.15 1.95 3.01 0.31 2.84 0.09

Biology  36.46 15.81 6.74 0.87 0.12 0.16

Business  2.06 2.08 5.95 1.51 14.56 13.50

Chemistry  0.34 8.44 0.85 9.28 4.23 0.00

Computer  Science 0.29 23.86 0.02 3.09 0.12 13.50

Economics  3.34 6.51 4.20 5.77 32.32 7.93

Engineering  8.36 0.09 10.48 0.35 8.36 0.03

Environmental Science 16.82 0.04 35.67 29.89 2.45 2.23

Geography  0.05 1.34 0.15 0.50 0.15 0.51

Geology  1.02 3.04 6.42 0.13 2.10 10.06

History  0.69 2.48 1.67 0.15 3.12 0.52

Materials  Science 0.39 0.43 0.23 0.01 2.37 0.10

Mathematics 5.17 1.94 0.10 0.14 0.09 25.34

Medicine  4.02 7.66 0.06 1.94 2.16 19.56

Philosophy  1.49 3.23 0.12 0.36 0.15 0.07

Physics  8.30 0.21 6.00 33.67 14.34 0.01

Political  Science 1.47 10.22 6.82 0.51 1.47 2.44

Psychology  5.75 1.43 8.56 10.24 2.93 1.65

Sociology  2.83 9.23 2.95 1.30 6.11 2.30

The bold values mark the fields that give the largest contribution to  the dM of each metric.

5.2. Results on the bias by  field

The rankings produced by different metrics differ greatly by their dM (see Fig. 4). As expected, the metrics that are not
field-rescaled (c, RA(p),  and p) are far from being unbiased. At  the same time, relative citation count that  is rescaled by field
performs only slightly better than PageRank which is ignorant of any field information. The best results by a wide margin are
achieved by our  metrics, RAF(c) and RAF(p),  obtained using the new rescaling. Nevertheless, both these metrics fail  to meet
the 95% upper bound achieved by  simulated unbiased rankings. As  disappointing as it may  seem, this finding is  not entirely
surprising as the proposed rescaling procedures focus on equalizing the first two moments of the respective quantities (c
and p) whereas the quantities’ distributions can differ also by higher moments.

To understand which field contributes the most to  the resulting dM values, we derived an alternative analytic expression
for  the dM

dM(�k, ��)2 =
F∑
i

z2i

(
1 − ki

N

)
(7)

where we omit the metric superscript (m) from the notation for zi and
�k for  simplicity. We have proven this formula

analytically  for F  =  3, 4, 5, 6, and we have numerically tested it for F = 19 and 760 (see Appendix B);  it remains open to prove
it in arbitrary dimensions.

In  Table 1,  we  report the individual fields’ contributions to the d2M calculated using Eq.  (7). We find that Biology and
Computer Science are the fields which give the biggest contributions to the d2M for the rankings by citation count and
relative citation count, respectively. This could not have been detected by looking at the deviations from the expected
values. Indeed, in  Fig. 1 we only see that Environmental Science and Political Science have the largest deviations. For the
novel indicators, approximately one third of the d2M of RAF(c) is  explained by the field of Economics and approximately one
fourth of the d2M of RAF(p)  is  explained by  the field of Mathematics.

In  addition, we also find that the dM’s  contributions across different fields assume values in a  relatively broad range. This
suggests that findings on rankings’ bias by field may  strongly depend on which disciplines are included or not in  the analysis.
We argue that arbitrary choices on which fields to include should be avoided in  future research on field-normalization of
impact indicators.

To  summarize, our bias suppression test allows us not only to estimate the level of bias (dM)  of the various metrics, but
also to quantify which percentage of the total bias (d2M) of an indicator is  explained by each single field.

5.3. Results on the bias by  age and field

While the analysis of the previous section focused on the ranking bias by field, in  this section we use the dM to  simulta-
neously  assess the bias by age and field of a  given ranking.

In  Fig. 5, we  show the dM’s  for the different indicators and for the 95% confidence interval for the simulated unbiased
selection  process using 40 ×  19 age-field types of publications. For citation count, PageRank, relative citation count and age-
rescaled PageRank we have to reject the hypothesis that the rankings of these indicators are  not biased by age and field. For
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Fig. 5. Mahalanobis distances, dM , for the analyzed indicators when considering the 760 age-field groups. From left  to  right: citation count, relative citation

count,  PageRank, age-rescaled PageRank, age- and field-rescaled citation count and age- and field-rescaled PageRank. The horizontal red line represents

the  upper bound of the 95% confidence interval obtained from the simulations. In the insets, we  report the distribution of dM coming from 1 000 000

simulations  of the unbiased sampling process. Again, the red  line represents the upper bound of the 95% confidence interval. (For interpretation of the

references  to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 6. Heatmaps showing the bias by field and age of the rankings by  the different indicators. Each cell represents an age-field group: age groups are

represented  horizontally, while fields are  represented vertically. The color of the cells shows the bias of the indicators with respect to that age-field group.

White  means that the respective age-field group is fairly represented in the top 1% of the ranking by  the indicator. While we use a  color scale from white

to  intense red (blue) for age-field group which are underestimated (overestimated). (For interpretation of the references to  color in this figure legend, the

reader  is referred to the web  version of the article.)

the improved indicators, age- and field-rescaled citation count and PageRank, we also have to reject the null hypothesis,
even though they are much closer to  the 95% confidence interval.

It  is worth to  notice that age-rescaled PageRank, an indicator developed to only remove PageRank’s bias by age (Mariani
et al., 2016), is significantly less biased compared to relative citation count, an indicator specifically designed to  simultane-
ously remove bias by age and field.

5.4. Simultaneously visualizing the bias by age and field

To  visualize the field and age bias of the rankings by the analyzed indicators, we  use heatmaps in the age-field group plane
(see Fig. 6). In these heatmaps, each cell represents a  field-age group, and its color indicates the level of bias. A white cell
indicates that the number of papers in the respective age-field group falls into the 95% confidence level (C95%)  determined
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with the simulations. Hence, white means that no bias is  detected for that age-field group. While for representing the
bias towards or against a  group of papers, we use blue (overestimation) and red (underestimation). To obtain a  range of
over/under-estimation, the brightness of the colors ranges from white (no bias) to intense blue/red. The most intense colors
indicate that the number of papers from that age-field group is 5 standard deviation smaller/bigger than the expected value.

The top panel of Fig. 6 shows that, independently of field, citation count and PageRank systematically over-represent
old  papers and under-represent recent papers. This is in agreement with the findings of several other works (Chen et al.,
2007; Mariani et al., 2015, 2016; Newman, 2009). The only exception is Political Science which is  usually underestimated
independently  of paper age. We  argue that this happens because this is the smallest field in the data set, and it has become
an academic discipline by itself much later compared to  most of the other fields3.  Also, the oldest papers in most fields are
under-represented by citation count, which reflects the change of citation practices over time.

The  middle panels of Fig. 6 show that the relative citation count and age-rescaled PageRank suppress large part of the
biases of the original metrics, yet specific fields are consistently overestimated or underestimated. For example, both age-
rescaled PageRank and relative citation count under-represent papers belonging to  the field of Chemistry. A peculiarity of
relative citation count is that it over-represents both the oldest as well as the most recent papers at the cost of the other
papers.

The bottom panels of Fig. 6 show the heatmaps for the new indicators age- and field- rescaled citation count RAF(c)  and
PageRank RAF(p). We find that the respective rankings are much less biased towards specific fields compared to all the other
analyzed measures. However, there are two patterns: for RAF(c) recent publications tend to  be underestimated for some
fields, whereas for RAF(p)  recent publication tend to  be overestimated for almost all fields. These rather systematic patterns
must have their roots in  changes of the citation and PageRank score distributions with time. Since our rescaling procedure
was fixing the first two moments of these distributions, the observed patterns come from differences in higher moments.
Thus, the distributions of RAF(c) and RAF(p)  are aligned only partially for papers of different age.

6.  Discussion and conclusion

To summarize, in this paper we have analyzed a  large citation network from the Microsoft Academic Graph to show that
the rankings of papers by well-known indicators are  extremely biased by age and field. The level of bias of the rankings has
been quantified with a  new statistical framework based on the Mahalanobis distance. This framework has allowed us to
simultaneously quantify the age and field biases of the analyzed rankings, and to determine which groups of papers give the
largest contributions to  the observed bias. To allow other researcher to easily implement our statistical test for ranking bias,
we make the respective code publicly available4 together with a  quick tutorial on how to use it.5 In addition, we have also
introduced two new indicators of paper impact, rescaled citation count RAF(c)  and rescaled PageRank RAF(p)  that produce
much less biased rankings than existing indicators. In  particular, the ranking by RAF(p)  is  approximately three times less
biased compared to the least biased existing metrics, relative citation count and age-rescaled PageRank.

The  contribution of our results to the debate on the validity of field-normalization procedures is threefold. First, our
findings are in agreement with the conclusions of Albarrán et al. (2011) and Waltman et al. (2012) which argued that the
relative citation count introduced by Radicchi et al. (2008) can be insufficient to  effectively remove citation count’s bias by
age and field. Second, we  show the importance of testing indicators using an accurate statistical procedure, such the one
introduced in  this paper. Indeed, for the least-biased indicators analyzed, RAF(c) and RAF(p),  no clear indication of bias is  found
at first glance. However, when using the statistical test based on the Mahalanobis distance, we find a significant discrepancy
between their rankings and those coming from unbiased sampling process. We argue that including higher-order momenta
(such as the skewness) in  the rescaling procedure can be an efficient way  to  further reduce the rankings’ level of bias. Third,
by deriving an explicit formula to calculate the contribution of each field to the bias of a  ranking, we find that the these
contributions assume a broad range of values. We obtain similar findings also for the contributions to  the age-field bias. This
means that the level of bias of rankings depends heavily on which years or fields are included in  the analysis. For this reason,
in future research on age  and field normalization of indicators, it is  essential to clearly motivate which years and fields are
included in the analysis, avoiding arbitrary or uncritical decisions.

To  address the bias by  age and field of ranking of papers, we have first divided the papers in groups with similar age and
from the same field. Then, we considered only the sizes of these groups to define an unbiased selection process from which
we obtained a  statistical null model for an unbiased ranking. In  principle, additional information can be included into the
null model to correct for other effects. For example, including information about the co-authorship network would permit
to correct for the effect of this network on the growth and structure of the citation network (Sarigöl, Pfitzner, Scholtes, Garas,

3 We notice that the classification of Political Science as one of the highest-level fields is  not  obvious. In Scopus categories, “Political Sci-

ence  and International Relations” is  only a subfield of the higher-level field Social Science [http://www.scimagojr.com/journalrank.php?area=3300].

In the Web  of Science classification scheme, “Political Science” is  only a  subfield of the higher-level field “Social Sciences, General”

[http://ipscience-help.thomsonreuters.com/inCites2Live/8300-TRS.html].
4 https://github.com/giava90/quantifying-ranking-bias.
5 https://www.sg.ethz.ch/team/people/gvaccario/quantifying-ranking-bias/.
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& Schweitzer, 2014; Sarigol, Garcia, Scholtes, & Schweitzer, 2017). In this way, we would gain a better understanding of how
the social dimension of science contributes to the field and age biases of impact indicators.

We emphasize that removing the biases addressed in  this paper and those that come from social aspects is of primary
importance not only for scholarly publication databases, but also for several other information systems, such as the WWW
or online social networks (Scholtes, Pfitzner, & Schweitzer, 2014a). As a matter of fact, every day scholars and on-line users
explore available knowledge using recommender systems based on ranking algorithms. This challenges us to  design more
sophisticated filtering and ranking procedures to avoid biases that  can systematically hide relevant contents or  only show
information too similar to what the users already know.

While  we  have analyzed in detail the presence of age and field bias in  the ranking, it still remains to evaluate the
actual ranking performance of the newly proposed indicators in artificial data (Medo & Cimini, 2016) or in  real data where
the ground truth is  provided by some external source (Dunaiski, Visser, & Geldenhuys, 2016; Mariani et al., 2016). Another
important issue is  the comparison between metrics based on citation count and metrics that take the whole citation network
into account to  determine papers’ score. Our analysis (see Section D) shows that the rankings by the least-biased indicators
RAF(c) (citation-based) and RAF(p)  (network-based) are positively correlated, still substantially different. Can we use the
extra-information provided by the network to enhance our ability to identify highly-significant publications? Our intuition
and the results presented by Chen et al. (2007) and by Mariani et al. (2016) for specific research fields suggest that this is the
case. Yet, we  need additional analysis to validate this conjecture in larger datasets such as the one analyzed in this article.

To conclude, by  reducing the age and field biases from indicators of scientific impact and by extending the existing
statistical  tests for biases, we contribute to the challenge of quantifying and suppressing biases of rankings in  information
systems.

Acknowledgements

We  thank Ingo Scholtes, Frank Schweitzer and Yi-Cheng Zhang for suggestions which improved the manuscript. In addi-
tion, we also thank Emre Sarigöl for his help in  pre-processing the data, and Elias Bauman for his important contribution
to  the optimization of the C++ code that we  used for the network analysis. GV acknowledges support from the Swiss State
Secretariat for Education, Research and Innovation (SERI), Grant No. C14.0036 as well as from EU COST Action TD1210
KNOWeSCAPE. MSM acknowledges support from the Swiss National Science Foundation Grant No. 200020-156188.

Author  contributions Conceived and designed the analysis: Giacomo Vaccario, Matus Medo, Nicolas Wider, Manuel Sebas-
tian Mariani.

Collected the data: Giacomo Vaccario.
Contributed data or  analysis tools: Giacomo Vaccario, Manuel Sebastian Mariani.
Performed the analysis: Giacomo Vaccario, Manuel Sebastian Mariani.
Wrote the paper: Giacomo Vaccario, Matus Medo, Nicolas Wider, Manuel Sebastian Mariani.

Appendix A. KDD Cup  data

A.1  Data source

In  this work, we analyzed the dump of the Microsoft Academic Graph (MAG) released for the KDD Cup 2016 (Sinha et al.,
2015), a competition linked to  a  prestigious computer science conference on knowledge discovery and data mining (KDD).
Among the primary interests of the community organizing the KDD Cup, there are the technical challenges related to  web-
scale data collection and aggregation. For this reason, the released data for the KDD Cup 2016 went through only basic
processing.6 Each publication in the dataset is endowed with its unique identifier, paperid, publication date, references to
other publications, and its field of study.

A.2 Data pre-processing

When  analyzing the data, we do not distinguish the publications by their type (paper, review, book, etc.). Further, we
also do not differentiate between different types of journals and take into account all of them: for example, we  do  not
distinguish between a  citation coming (or going) from (or to) a letter or a  book. We  argue that it is important to keep various
types of journals and publications because different fields adopt not only different citation norms, but also different ways to
communicate their results. For example, computer science researchers commonly publish results in  conference proceedings,
while physics authors tend to prefer articles or letters. At the same time, we are aware that different types of publications
might have different citation characteristics. However, good indicators should ideally be able to  account for heterogeneities
among publications and citation norms across different communities and produce unbiased rankings without the need for

6 https://kddcup2016.azurewebsites.net/Data
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Table  A.2

Main  fields. The 19 parent main fields identified by Microsoft Academic Graph with their number of publications and average citations. The  second to  last

row  reports the total number of publications considering multiple times publications that belong to more than one fields, whereas the last row reports the

total  number of unique publications and the average citation count.

Field Publication count Mean citation count

Art 233 251 3.90

Biology 5  847 554 9.67

Business  613 827 4.81

Chemistry 6  204 531 7.28

Computer Science 4  080 636 6.13

Economics 2  252 921 5.56

Engineering 3  011 763 5.10

Environmental Science 315 465 12.63

Geography 288 338 6.92

Geology 1  825 707 7.88

History 390 144 5.53

Materials  Science 2  063 474 6.12

Mathematics 4  551 453 5.87

Medicine 5  061 990 7.90

Philosophy 787 649 5.05

Physics 6  976 644 5.55

Political Science 144 473 2.51

Psychology 2  861 813 8.23

Sociology  1  784 695 5.39

Total 49  296 327 –

Total (no multiple) 18  193 082 6.42

arbitrary choices about which types of articles to include in  the analysis. In addition, similarly as Waltman et al. (2012) and
differently from Radicchi et al. (2008), we do  not exclude publications which do  not receive citations.

As  mentioned in  Section 2, the MAG  has a  field classification scheme with 4 hierarchical levels. The field assignment is
based on an internal algorithm that uses a  machine learning approach (Sinha et al., 2015). In our work, similarly to Radicchi
et al. (2008), we are only interested in impact metric normalization at the most coarse-grained level. To this aim, in our
analysis, we focus only on the 19 main fields as listed in Table A.2. Discussing the possible limitations of the classification
approach  by MAS  and the dependence of our  results on the adopted classification scheme is a relevant subject for future
research but goes beyond the scope of this manuscript. We only included in the analysis papers for which the following
information are available: (1) unique identifier (ID); (2) complete publication date (yyyy/mm/dd) crucial for the temporal
rescaling procedure that is  explained in  the following; (3) DOI or journal-id, in  order to be able to retrieve the publication;
(4) assignment to at least one of the main 19 fields. We discard from our analysis publications for which one or more of
these four properties are missing.

With  this filtering procedure, we  obtain N =  18 193 082 unique publications and E  =  109 719 182 citations.

A.3 Data basic statistics

We  first observe that the distributions of both incoming and outgoing edges are  broad (see Fig. A.7). Both these distribution
in fact have long and heavy tails. In addition, we  also observe strong variations of the mean citation count across fields (see
Table A.2 for details). For example, publications belonging to the field of Environmental Science and of Political Science have

Fig. A.7. In- and out-degree distribution for the publications present in our dataset after preprocessing the data.
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Fig. A.8. Scatter plot of the citation counts reported in the data released for the  KDD Cup 2016 and from the online version of the MAG  (02/2017).

mean citation count two times bigger and smaller, respectively, compared to  the average citation count across all fields. In
agreement with the findings by Radicchi et al. (2008), Schubert and Braun (1986), Vinkler (1986), the strong variety in  mean
citation count per publication for the various fields confirms that the corresponding communities exhibit different citation
behavior, which calls for field normalization procedures.

A.4 Data quality

Here,  we  address the following question: to which extent is  the KDD dump of the MAG  in accordance with the most
updated online version of the MAG?7 For this comparison, we divided the 49 296 327 analyzed paper-field pairs (one paper-
field pair is  composed of a  paper and the fields that paper belongs to) into 760 age and field groups, as described in  Section 5.
From each group, we randomly choose 0.1% of papers. Following this procedure, we obtained a  representative sample with
respect to field and age composed of approximately 50 000 papers.

First, we  have matched the paper ID in  hexadecimal format present in the data released for the KDD Cup to the paper
ID in int64 format present in the on-line version of the MAG. For 50 papers, we manually verified that the paper IDs were
exactly the same in the two datasets, albeit represented in different formats. Then, using the Academic Knowledge Api,8 we
have downloaded the number of citations for each sampled paper.

For  the 2.3% of the sampled papers, we were not able to find their corresponding paper in  the online MAG. For 50
unmatched papers, we found out that these were papers with duplicates in  the KDD Cup data, i.e. these papers are present
in the KDD data with two distinct IDs, and only one of the two  IDs is  present in  the MAG.

For the matched papers (97.7% of the sample), we compared the number of citations reported in  the KDD dump of the
MAG with the number of citations reported on the online version of the MAG. Since the online MAG has a  longer time span
than the KDD data, in the absence of noise, we would expect the number of citations in the KDD data to be smaller than
or equal to the number of citations reported in the online MAG. We  find that the two  citation counts are highly correlated
(Fig. A.8), and only the 2.2% of the sampled papers have more citations in the KDD data compared to the online version of
the MAG. This sets a  lower boundary for the error in the percentage of papers with wrong number of citations to about 2.2%.

To summarize, after our filtering procedure, we find that the data released for KDD Cup 2016 has about 2.3% of papers
with duplicates. In addition, about 2.2% of the matched papers have errors in their citation count. This means that we have
correct citation information for about 95.6% of the analyzed papers.

Appendix  B. Evaluating individual contributions to  the Mahalanobis distance

The Mahalanobis distance (dM) is  an established measure in statistics which generalizes the concept of z-score to multi-
variate distributions by  taking into account also possible correlations between the random variables (Mahalanobis, 1936).
Its definition reads

dM(�x, �y)  =
√
(�x − �y)T S−1(�x − �y) (B.1)

7 We have performed this analysis during February 2017.
8 https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
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where S−1 is the inverse of the covariance matrix, �x and �y are two  vectors containing the random variables. When the
covariance matrix is  diagonal, i.e. the random variables are  not correlated, than the dM is equivalent to  the square root of
the sum of the squares of the z-scores.

In Section 5.2, we have used Eq.  (7), an expression for the dM valid when the covariance matrix comes from a  Multivariate
Hypergeometric  Distribution (MHD), i.e., when the elements of the matrix are

Sij =
(

ıij(Ki(N − Ki)) −
(
1 − ıij

)
KiKj

)
� ∀i, j =  1, . . .,  F  − 1 (B.2)

where ıij is the Kronecker delta, Ki is the number of papers of category i,  N =
∑F

i Ki is  the total number of papers, F  is  the

number of paper categories, � =  n(N  − n)/N2(N  − 1) and n is the number of sampled papers. It is  worthy to remember that
even though we have F  different categories, we only have F  −  1 degrees of freedom. Here, we  derive Eq.  (7) for the case of a
MHD in three dimensions, i.e., for F  =  3.  In this case, the covariance matrix is 2 × 2:

S  = �

(
K1(N  − K1)  −K1K2

−K1K2 K2(N  − K2)

)
(B.3)

and the inverse of the covariance matrix is

S−1 = 1

� det(S)

(
K2(N  − K2) K1K2

K1K2 K1(N  −  K1)

)
(B.4)

where det(S) =  K1(N − K1)K2(N  −  K2) −  (K1K2)
2 denotes the determinant of the covariance matrix, S. Then, let us consider two

random column vectors extracted from a 3-dimensional MHD, �x = (x1, x2, x3)
T and �y  = (y1, y2, y3)

T such that n =
∑3

i=1xi =∑3

i=1yi where n is  the number of sampled papers. Substituting Eq. (B.4) in Eq. (B.1), we write the square of the dM between
�x  and �y as

dM(�x, �y)2 = 1

� det(S)

(
x1 − y1 x2 −  y2

) (
K2(N  − K2) +K1K2
+K1K2 K1(N  − K1)

)  (
x1 − y1
x2 − y2

)
= 1

� det(S)

{
(x1 − y1)

2K2(N  −  K2) +  (x2 − y2)
2K1(N  − K1)

+ 2(x1 −  y1)(x2 − y2)(K1K2))
}

= 1

� det(S)

{
(x1 − y1)

2K2(K1 +  K3) +  (x2 − y2)
2K1(K2 + K3)

+ 2(x1 −  y1)(x2 − y2)(K1K2)
}

= 1

� det(S)

{
(x1 − y1)

2K2K3 + (x2 − y2)
2K1K3

+ [(x1 −  y1) +  (x2 −  y2)]
2K1K2

}
where we have used N =

∑3

i=1Ki.  Recalling that n =
∑3

i=1xi =
∑3

i=1yi, we  know that (x1 − y1) + (x2 − y2) = (x3 − y3), so we
write

dM(�x, �y)2 = 1

� det(S)

{
(x1 − y1)

2K2K3 + (x2 − y2)
2K1K3 + (x3 − y3)

2K1K2
}

(B.5)

Then, by using the relation det(S)  =  N
∏3

i=1Ki,  we have:

dM(�x, �y)2 = 1

�

3∑
i=1

(xi − yi)
2

NKi
; (B.6)

noticing from Eq. (B.2) that � =  Si,i/(Ki(N  − Ki)), we  obtain

dM(�x, �y)2 =
3∑

i=1

(xi − yi)
2

Sii

Ki(N  − Ki)

NKi
=

3∑
i=1

(xi − yi)
2

Sii

(
1 − Ki

N

)
(B.7)

Finally, if we  choose one of the two vectors to contain the expected values, �i,  we re-obtain Eq. (7) since (xi −  �i)
2/Sii =  z2

i
.

To be precise, the covariance matrix is not  defined for i =  3,  however the relation � = �23/(K3(N  − K3)) holds and therefore
also  the final result.

Using  Mathematica or  similar softwares, it is easy to  prove analytically that eq. (7) holds for small dimensions. We have
verified it until 6 dimensions. Moreover, we have numerically tested this formula by calculating the dM’s between the ranking
vectors of the indicators and the vector of expected values, ��, with two  different alternative methods: (1) by using Eq.  (B.1),
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Fig. C.9. Distribution of �2 obtained by  calculating the empirical ratio, r =  (e�2 − 1), between the variance and the square of the mean citation count of

each  field and year.

i.e., by inverting the covariance matrix, and (2) by  using the eigenvalue decomposition of the covariance matrix.9 The results
of the three methods were all compatible with each other up to 10 decimal digits. The advantage of using Eq. (7) is  that we
can calculate the dM between two arbitrary vectors without dealing with any (computationally slow) matrix inversion or
diagonalization, and the number of needed calculations scales linearly with the number of dimensions. Importantly, Eq. (7)
allows also to assess the individual contribution of each dimension (i.e. of each category) to the d2M. To our best knowledge,
we are the first ones to have derived such explicit formula for dM when the covariance matrix and the random vectors come
from a MHD.

Appendix C. First moment rescaling

According to Radicchi et al. (2008), the distribution of the cf indicator is  log-normal:

F(cf )dcf = 1

�cf
√
2�

e−[log(cf )−�]
2

/2�2dcf (C.1)

where � =− �2/2 and � is  fitted from the data. When Eq. (C.1) is verified, then also the distributions of citation count, ci,  for
all the individual fields, i, are lognormal:

F(ci)dci = 1

�ci

√
2�

e−[log(ci)−log(c0)−�]2/2�2dci (C.2)

where c0 is  the mean of ci.  For lognormal distributions the variance is proportional to the square of the mean and the

constant of proportionality is (e�2 − 1). From Eq.  (C.2), we see that the citation counts ci are distributed lognormally with

mean e�+log(c0)+�2/2 and variance (e�2 −  1)e2�+2 log(c0)+�2 . Recalling that � =− �2/2,  we have that the mean is c0,  as it is

expected, while the variance becomes (e�2 − 1)c20.  Thus, when eq. (C.1) is  verified, the variance of the empirical distribution
of the citations for each field has to be proportional to the square of the mean citation count. Moreover, the constant of
proportionality has to be (e�2 − 1) for every field and year.

The analytic result just presented is  in  line with Eq. (C.1) given in  Appendix C of Mariani et al. (2016). There it is  shown
that a rescaling procedure based on diving the original score by their first moment works if the ratio between standard
deviation and mean is constant. In the case of the relative citation ratio, we can calculate analytically such constant using
the lognormal distribution and obtain the fitting parameter �2.

In Fig. C.9, we report the distribution of �2 obtained by calculating the empirical ratio between the variance and the
square of the mean, r,  and by  inverting the relation r =  (e�2 − 1)  for every field and year. If the universality claim was  correct,
we would expect a  narrow distribution of �2. By contrast, we find that �2 ranges between 0 and 8 across different fields and
years. We  argue that the broad range of �2 is  the reason why the first moment rescaling introduced in (Radicchi et al., 2008)
does not work in the analyzed dataset.

9 The matrix S is  symmetric and it has maximal rank because it is the covariance matrix of a multivariate distribution. Therefore, we can diagonalize it,

S  = B−1DB where the columns of B form an orthonormal basis; we  can  also write S−1 =  B−1D−1B.  With this, we have d2M(�x, �y) =
∑F−1

i
ci/�i ,  where {�i} are

the eigenvalues of S and {ci} are  the coordinates of �x − �y in  the basis which diagonalizes S,  i.e.  ci =
∑F−1

k
(xk − yk)B

−1
ki

=
∑F−1

k
(xk − yk)Bik where the last

equality comes from the orthonormality of B  which implies B−1 =  BT .
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Table  D.3

Correlations between the metrics. The four columns represent (from left to  right): Pearson’s correlation coefficient r,  r restricted to  papers that received at

least ten citations, Spearman’s rank correlation coefficient 	, and 	 restricted to  papers that received at least ten citations.

Metrics r r (only c > 10) 	 	 (only c > 10)

c, p 0.82 0.82 0.79 0.59

RAF(c), RAF(p) 0.80 0.81 0.82 0.74

Appendix D. Comparing the rankings by the metrics

In  Section 5, we have shown that the rankings by citation count and PageRank can be substantially leveled off across
different fields and age groups through a  rescaling procedure based on the z-score. The two resulting indicators, RAF(p)
and RAF(c), are the least biased among the indicators considered in  this paper. It  is  important to  notice that while citation
count has a  direct interpretation and it is  widely used in research evaluation (Waltman, 2016), PageRank score is a more
sophisticated quantity which has not yet be turned into a standard tool for research assessment. If the rankings by rescaled
PageRank and rescaled citation count brought similar information, rescaled citation count might be preferred due to  its
simpler interpretation and easier computation.

Differently from the citation count, PageRank score uses information on  the whole network topology to compute each
paper’s score. While there exists no universal criterion to decide whether PageRank score leads to  a  better ranking than the
citation count, the results by Chen et al. (2007) and Mariani et al. (2016) suggest that in citation networks, PageRank score
improves our ability to find groundbreaking publications in  the data. On the other hand, a node that received many citations
is more likely to  achieve larger PageRank score – Fortunato, Bogu ná, Flammini, and Menczer (2006) showed that PageRank
score is on average proportional to  citation count for uncorrelated networks.

We address now the question: To what extent the rankings by  (rescaled) PageRank and (rescaled) citation count differ? We
focus on two correlations: (1) the correlation between citation count and PageRank, which has been of interest for previous
studies (Chen, Gan, and Suel (2004), Fortunato et al. (2006), Pandurangan, Raghavan, and Upfal (2002)) due to the essential
role played by PageRank algorithm in determining the success of Google’s Web  search engine; (2) the correlation between
the two rescaled indicators RAF(c) and RAF(p).  The measured correlations are all positive, significantly larger than zero, yet
significantly smaller than one (see Table D.3). This is  interesting as it may point out that, in analogy with the findings by
Chen et al. (2007), Mariani et al. (2016), Ren, Mariani, Zhang, and Medo (2017), network topology brings useful information
that is neglected by citation count. Whether the additional information used by PageRank metric can be used to identify
groups of significant papers will be  the subject of future research.

Differently than the rankings by citation count and PageRank score (not shown here), the top papers identified by RAF(c)
and RAF(p) come from diverse historical period and diverse fields. Due to  the lack of time bias, also very recent papers can
reach the top of the rankings by  RAF(c) and RAF(p). It would be instructive to  look at the top papers as ranked by rescaled
citation  count and rescaled PageRank. However, the original MAG datasets presents noisy entries, as reported by the KDD
cup 2016 (see Appendix A for more details), and it causes the scores of some recent papers to be over-estimated, which
makes some of the entries in  the top-20 of the rankings by the rescaled scores unreliable. For this reason, we do not show
the rankings here. At the same, this problem does not  affect the statistical results presented in the previous Sections.
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