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Abstract

With the emergence of the Internet of Things (IoT) and the rise of shared multimedia content on social media networks,
available datasets have become increasingly heterogeneous. Several multimodal techniques for detecting events in data of
different types and formats have emerged. Those techniques implement various detection algorithms and present different
trade-offs in terms of data fusion. Unfortunately, little is known about their underlying detection mechanisms, as existing
comparisons are limited to either unimodal event detection techniques or specific types or representations for multimodal
techniques. Understanding the behavior of multimodal event detection techniques remains an acute open research problem.
In this work, we present a systematic literature review of multimodal event detection techniques. We describe how various
techniques leverage information from different modalities through data fusion. We further propose a novel taxonomy of
multimodal event detection techniques according to their temporal orientation and the inner workings of their detection
mechanism. Finally, we analyze the datasets and metrics used in previous works as well as their reported results. Our survey

allows to uncover the properties of each approach and discuss future research directions in this field.

Keywords Event detection - Data fusion - Multimodal representation - Heteregenous data

1 Introduction

Real-world events are often captured as data that unfold over
time and space [3, 129]. They are inherently temporal, in the
sense that they occur at various time points, and also often
change in nature over time [119, 127]. The automatic identi-
fication of event occurrences—known as event detection—has
recently gained much attention in the research community.
This task has become a fundamental operation in many appli-
cations such as identifying real-time events on social media
platforms [95, 124], monitoring critical infrastructure [19,
86], detecting acute health events for patients [57, 63, 101],
predicting imminent cybersecurity hazards [76, 115], or min-
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ing multimedia archives for potential events of interest [22,
122, 125].

Event detection is commonly applied to homogeneous
datasets of a single type such as time series, textual con-
tent, audio and video recordings, geographic coordinates,
images, or social interactions. Such unimodal detection aims
to retrieve either specific events by matching a query to a
pattern or by identifying open-ended events by searching
for statistical anomalies. A large number of techniques have
been introduced in this context [12, 16, 17, 64, 69, 71, 77,
105, 109, 118]. Several surveys and benchmarks have com-
pared those unimodal event detection techniques in multiple
domains ranging from social media networks [6, 31, 44, 46,
51, 54, 79, 83, 123] to wireless sensor networks [50, 82],
audio streams [8, 25, 112], and biomedical signals [49, 64].

With the emergence of the Internet of Things (IoT)
and the growing trend of sharing multimedia content on
social networks in real-time, available datasets have become
increasingly heterogeneous, offering access to multiple data
modalities at a time. Those modalities emanate either from
the observed instances themselves (e.g., a social media post
composed of both image and text) or by merging data
from different sources (e.g., monitoring a patient’s state by
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combining physiological measurements and textual medical
records).

Multimodal event detection techniques attempt to lever-
age information gathered from several heterogeneous sources
jointly. They have been applied to solve a myriad of real-
world problems. In the medical domain, for instance, Chen
et al. [26] combine clinical notes with physiological sen-
sor readings to alert for imminent health events. Another
example is social networks, where Brenner et al. [22] use
query-based event detection by merging images, metadata,
and text. A third example is road networks where Pan et al.
[89] combine social media messages with mobility data to
detect traffic events.

One of the most critical challenges in multimodal event
detection is combining multiple data types into a uniform
representation. This merging process is called data fusion.
According to Gao et al. [43], data fusion aims to “integrate the
data of different distributions, sources, and types into a global
space in which both intermodality and cross-modality can be
represented in a uniform manner”. This is often achieved by
leveraging the information each modality provides, as well
as the cross-modality interactions between data types. While
handling several modalities is technically more complex than
homogeneous event detection, it has at least two main advan-
tages.

First, some events are imperceptible when modalities are
treated individually but can be effectively detected using mul-
tiple modalities. One example in that context is detecting
medical events while recording patients’ real-time physio-
logical measurements and storing their health assessments in
textual clinical notes. Relying on the sensor readings solely
without taking into account the health context of the patient
stored in the clinical notes might result in missing important
events [48, 63].

Second, erroneous event detection can often be avoided
by considering additional modalities. In the same medical
example, a physiological sensor can be temporarily faulty and
cause an anomaly in the signal, even if no event is occurring
as confirmed by additional sensors and modalities [28, 53].
Relying on multiple modalities can, therefore, reduce the
occurrence of false positives.

Ultimately, the performance of multimodal techniques
heavily depends on the underlying data fusion method they
use. Existing comparison studies on data fusion, such as
[139], are generic in the sense that they do not focus on event
detection. Hence, they do not clearly represent the intricate
differences between event detection categories that have been
recently introduced. Unlike those works, we identify three
different categories of data fusion mechanisms depending on
the stage they have been applied. Data characterization-based
fusion extracts the features from each modality and combines
them directly. Transformation-based fusion is achieved by
training a model that maps each modality into latent rep-
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resentations, which are combined in a later stage. Lastly,
decision-based fusion applies event detection to each modal-
ity separately and integrates the individual event detection
results to obtain a combined score.

This diversity in those fusion mechanisms calls for a com-
parative study of event detection techniques. A handful of
surveys have been proposed to achieve this goal, such as Hu
el al. [54] and Xiao et al. [126]. They, however, restrict the
definition of event detection to a single task and, thus, over-
look a large body of techniques that represent the different
tasks we introduce later in the paper. Additionally, those sur-
veys do not include the temporal dimension in their analysis
and focus only on the techniques that detect events in the
past. By doing so, they omit several techniques that aim to
detect events occurring in real-time or in the imminent future.
To the best of our knowledge, no prior work has compared
multimodal event detection based on these two criteria. This
survey aims to bridge this gap.

Specifically, we propose a new taxonomy of event detec-
tion techniques based on their temporal orientation, further
distinguishing different families of approaches within each
category. Additionally, we report the detection results as
introduced by the authors of those techniques and describe
the datasets and metrics commonly used in this field. We dis-
cuss the limitations of those techniques in terms of datasets
and metrics and highlight their domain applicability.

Lastly, we present the recurring applications of multi-
modal detection, including social event detection, medical
event detection, and multimedia event detection. We point out
research problems that remain unsolved and present poten-
tial remedies. In particular, we discuss the need to benchmark
the quality and efficiency performance of existing techniques
and the limitations of the available datasets. We also discuss
emerging trends in IoT and hardware acceleration for mul-
timodal processing and uncover future event detection use
cases.

The rest of this paper is organized as follows. After intro-
ducing some terminology and background related to event
detection in Sect.2, we lay the groundwork for the various
data fusion mechanisms in Sect.3. Section4 discusses the
different classes of multimodal event detection and groups
them into retroactive, real-time, and forecasting techniques.
An overview of evaluation metrics and datasets is provided
in Sect.5. Finally, applications and future opportunities are
presented in Sects. 6 and 7, respectively.

2 Event detection

The definition of event detection varies broadly across the
literature, depending on the task at hand. Table 1 provides
a comparative summary of existing techniques, highlight-
ing how each technique complements the event detection



A survey of multimodal...

Page 3 of 25 9

Table 1 Summary of the
surveyed multimodal event
detection techniques

Technique

Task

Use-case

Properties

Cecaj et al. [24]

Han et al. [48]

Banerjee et al. [9]

Rodrigues et al. [106]

Ould et al. [86]

Chen et al. [27]

Khadanga et al. [63]

Pan et al. [89]

Yilmaz et al. [132]

Cai et al. [23]

Peng et al. [94]

Ghaemi et al. [45]

Oh et al. [84]

Yang et al. [131]

Ma et al. [78]

Petkos et al. [97]

Petkos et al. [99]

Anomaly

Anomaly

Anomaly

Anomaly

Anomaly

Anomaly

Anomaly

Anomaly

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Identifying unusual social
activity

Identifying unusual social
activity

Identifying unusual social
activity

Identifying unusual social
activity

Infrastructure monitoring

Social media monitoring

Clinical monitoring

Traffic monitoring

Social media mining

Social media mining

Social media mining

Social media mining

Video archive mining

Image archive mining

Image archive mining

Image archive mining

Image archive mining

Detects anomalies using
distinct geographic
regions

Detects anomalies based on
topic and location clusters

Hidden Markov
Modeling-based detection
of anomalies

Deep learning-based
prediction combining text
and mobility data

Computes a geographically
weighted voting scheme
on a wireless sensor
network

Identifies anomalous
subgraphs on an ad-hoc
heterogeneous social
graph

Deep learning-based joint
modeling of sensor data
and clinical notes

Models traffic as activity on
a graph and combines it
with social media data

Estimates the latent
variables underlying
distributions of tweets

Uses topic models to
represent events as
mixtures of multimodal
distributions

Builds a message-based
Heterogeneous
Information Network
(HIN)

Extends DBSCAN to
handle geospatial
heterogeneity

SVM-based feature learning
of visual and audio
streams

Semi-supervised
learning-based fusion and
DBSCAN-based
clustering

Extends SVD using
similarity-based
adjacency matrices

Learns similarity measures
across modalities using
spectral clustering

Applies community
detection on a similarity
graph
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Table 1 continued

Technique

Task

Use-case

Properties

Wang et al. [122]

Yang et al. [130]

Reuter et al. [104]

Peng et al. [95]

Chen et al. [28]

Chen et al. [26]

Horng et al. [53]

Yang et al. [128]

Brenner et al. [22]

Elhoseiny et al. [38]

Wu et al. [125]

Younessian et al. [133]

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Labeling

Query

Query

Query

Query

Image archive mining

Image archive mining

Image stream monitoring

Social media monitoring

Traffic monitoring

Clinical monitoring

Clinical monitoring

Clinical monitoring

Text search in image
archives

Text search in video
archives

Text search in video
archives

Text search in video
archives

Incremental clustering on
learned representations of
a social interaction graphs

Graph matrix factorization
technique applied on a
similarity graph

Compares streaming
instances to
representatives of known
event classes

Extends the HIN-based
approach to handle
streaming event detection

Semi-supervised deep
learning event
classification

Tree-based prediction
combining patient
information and sensor
data

SVM-based prediction
combining patient
information and sensor
data

Deep learning-based
prediction combining
patient information and
sensor data

SVM-based feature learning
and event retrieval

Embeds videos and queries
into the same
distributional semantic
space

Projects video and query
embeddings into a
common lexicon space

Retrieve events based on
similarity of video
features and queries

landscape. The columns “tasks”, “use-case”, and “proper-
ties” characterize each work by the type of tasks it supports,
its application domain, and the underlying event detection
mechanisms. All surveyed approaches tackle one of the event
detection definitions introduced below, which determines the
overarching objective of their technique: detecting anoma-
lies, labeling instances into meaningful groups of events, or
retrieving event-related instances based on queries.

We describe the properties of each technique in more detail
later and summarize the main categories of event detection
techniques according to the temporal dimension. We use this
dimension to organize the surveyed multimodal event detec-
tion techniques.

@ Springer

2.1 Event detection tasks

We distinguish three recurrent tasks widely explored in multi-
modal event detection. Below, we introduce those tasks and
provide a formal definition for each. Before describing in
detail the tasks, we provide a brief overview of the different
ways event detection is commonly perceived in the literature.

In the first conception of event detection, techniques aim
at identifying which instances in a dataset deviate from the
norm and thereby indicate that an unusual event is occurring.
A second perspective assumes that all data instances pertain
to an event and aims to find which event each instance belongs
to. The third notion consists of retrieving the instances corre-
sponding to an event description provided as a textual query.
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2.1.1 Anomaly identification

Anomaly detection techniques compute an expected baseline
of activity during normal runtime (e.g., usual sensor readings)
and trigger the detection of an anomalous event whenever the
behavior diverges significantly. Only a subset of all instances
belong to an event; a technique will identify this subset as
accurately as possible.

Definition 1 Identifying anomalies in a dataset consists of
distinguishing between normal and anomalous instances.
Formally, given a dataset of multimodal data instances I =
{i1, iz, ..., 1in}, the event detection is a surjective function
thatidentifies all the data instances associated with an anoma-
lous event, i.e., f : [ — {0, 1}.

Existing works use one of two implementations to address
Definition 1. The first set of techniques models the expected
values when no event occurs and identifies statistical anoma-
lies deviating from these baselines. Approaches [24, 48, 86]
establish the statistical baseline with respect to the location
the instances originate from. The authors in [27, 89] represent
instances as nodes in a graph and identify statistically anoma-
lous subgraphs. The second set of techniques, illustrated by
the approachesin [9, 53, 63, 106, 128], train machine learning
models to assign instances into either the normal or anoma-
lous category.

2.1.2 Data classification/clustering

The second task assumes that every observed instance in a
dataset pertains to an event. The event detection then assigns
the appropriate event label to each instance. Depending on
whether the types of events are specified in the dataset, the
event labeling task is addressed using either classification
models or clustering techniques.

Definition 2 Labeling events in a dataset consists of assign-
ing an event label to each instance. Formally, given a dataset
of multimodal data instances I = {iy, iy, ..., i,} and event
labels L = {ly, I, ..., I;}, the event detection can be defined
as a surjective function that assigns for each instance an event
labell, € L,ie.,g:1 — L.

Similarly to the first task, Definition 2 is implemented
in two variants, depending on whether the event labels are
defined (supervised) or not (unsupervised). In a supervised
setting, a list of event labels is pre-defined, e.g., L =
{“protest”, “accident”, etc.}. The techniques introduced by
the authors in [84, 94, 104] address this task by first training
multi-class classification models. The event detection then
consists of labeling each unseen instance with its correspond-
ing event class.

When the list of labels is unknown beforehand, techniques
use unsupervised approaches. The techniques presented in

[45, 78, 95, 97, 99, 122, 130-132] use either clustering
algorithms or graph community detection to identify groups
of instances. Each instance is thus assigned to one of the
unnamed event clusters [, € L.

2.1.3 Query retrieval

In the third task, events of interest are described by textual
queries. Those queries can range from specific formulations,
such as “Equifax 2017 data breach”, to generic event cate-
gories, such as “Public protest”. The provided queries need
to be interpreted first, after which the inferred events are
detected in the available instances.

Definition 3 Query-based event detection retrieves instances
matching a textual query describing an event. Formally, given
a dataset of instances I = {iy,i2,...,i,} and a query ¢,
the event detection function £ (I,q) — [0, 1] finds
instances i € I corresponding to query q.

The authors in [22, 38, 125, 133] implement this definition
by developing ranking processes, which compare the input
queries with the training instances and their (potential) event
labels. The models learn meaningful representations of the
instances to perform the comparison and are trained to embed
textual queries into the same embedding space. The event-
related instances matching the queries in this space are then
returned.

2.2 Event detection categories

As mentioned earlier, the temporal dimension is an inher-
ent property of any event detection technique. The proposed
approaches widely differ depending on whether the exam-
ined events occurred before the launch of the event detection
system, during its deployment, or after its computation.
Techniques can thus be categorized according to the tempo-
ral dimension into three classes: (i) retrospective historical
techniques, (ii) real-time techniques, and (iii) prospective
forecasting techniques.

Figure 1 introduces our taxonomy that describes this cat-
egorization. In the first level of the tree, event detection
techniques are split according to their temporal orientation.
In the second, techniques are further categorized into families
of approaches. We briefly introduce each of those families
below and discuss them in further detail in Sect.4.
Retrospective Detection. Techniques from this class aim
at detecting events a posteriori, based on historical data.
Detecting events retrospectively generally resorts to either
mining historical baselines to find and highlight anomalous
instances or discovering clusters of instances that pertained
to the same event. Detecting events in past data is frequently
used to retrieve instances pertaining to a known event in large
multimedia collections.

@ Springer
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Fig.1 Taxonomy of event detection techniques using data fusion

Real-time Detection. Techniques detecting events at run-
time generally follow a two-stage process. First, they make
use of past data to extract expected baselines or to pre-train
models. Event detection is subsequently performed incre-
mentally on incoming streaming data to detect anomalous
behavior. The objective of such techniques is often the moni-
toring of physical systems or streams of social media content.
Prospective Detection. Forecasting the occurrence of future
events is a natural extension of event detection in real-
time. Events may be preceded by leading indicators, such as
causally linked precursory events, or may follow seasonality
or cycles. Predicting events often boils down to effectively
detecting specific temporal patterns and chains of events in
the data. Such techniques are often developed for the medical
domain, where physiological measurements can be used to
predict health events.

3 Data fusion

Data fusion is the cornerstone of multimodal event detection
techniques that allows them to integrate information from
more than one modality. The studied techniques adopt one
of three data fusion mechanisms. Those mechanisms vary
depending on when they occur in the event detection pipeline.
Data characterization-based approaches operate at the feature
level, transformation-based approaches learn the encoding
of the features and fuse them at the representation level, and
decision-based approaches aggregate detection scores. We
discuss each of those mechanisms in detail below.

3.1 Data characterization-based fusion

Fusion based on data characterization is implemented by
extracting key features from each modality and combining
them into a joint representation. This concept is similar to
the Extract, Transform, Load (ETL) process used in other
fields such as data integration [2, 62] or warehousing [113].
The data characterization-based fusion mechanisms are com-
posed of three stages. First, features are manually extracted
from each modality. Second, the selected features are prepro-
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cessed by applying normalization, scaling them to the same
magnitude, or projecting them into the same vector space.
Third, the modalities are combined based on the extracted
characteristics into a fused data format.

For each data modality, there are several possible char-
acterizations. Commonly used features when handling text
are bag-of-words [131], tf-idf [104], bigram detection [53],
keyword extraction [26, 94], and pre-trained word embed-
dings [48]. When considering time series, several techniques
select summary features, such as the minimum, maximum,
and average (e.g., [26, 53]). Image and video features are
generally based on object recognition (e.g., [9]) or visual
similarity (e.g., [131]).

Since the features extracted from the input modalities are
usually of different scales, several techniques apply rudi-
mentary preprocessing, such as normalization [53]. Other
proposed fusion mechanisms (e.g., [78, 104, 131]) pro-
cess features by computing a similarity score within each
modality. The similarity in the textual content is commonly
computed with the Jaccard index [41] between word occur-
rences or the cosine similarity of their tf-idf vectors [117].
Location features are often compared using the Haversine
distance [51] between geographic coordinates and images
using perceptual hash values [135]. All similarity scores are
then scaled and used as the new feature values.

We detail the feature extraction and processing of a sin-
gle modality with the example of text in Fig.2. The words
of a document are first embedded using an off-the-shelf
text embedding library (e.g., fastText [21]). Duplicates are
removed, and a dimensionality reduction technique, e.g.,
Principal Component Analysis (PCA) [37], is applied to
obtain a preprocessed feature vector of the original docu-
ment.

To combine the preprocessed features of the different
modalities, some techniques opt for a simple concatenation
of the values into a fused feature vector (e.g., [26, 53, 104,
131]). Alternatively, in [94], the authors combine the features
extracted from multimodal social media messages by encod-
ing the multimodal instances into a heterogeneous graph
representation. They first extract entities from the messages
(e.g., keywords, users, topics, etc.) and treat each entity as a
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Fig. 2 Feature extraction depicted with the textual modality. Words
are embedded, duplicates are removed, and a dimensionality reduction
technique is applied to obtain a feature vector that encodes the text
document

Word embedding Dimensionality Reduction
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Fig.3 Datacharacterization-based Fusion. A medical record composed
of atime series, a clinical note, and an X-ray image is fused by (i) extract-
ing features, (ii) applying preprocessing, and (iii) concatenating the
features of each modality into a common feature vector

node. In the second step, the authors create edges between
the nodes whenever the features of any modality are similar
(e.g., co-occurring words, nearby locations, similar times-
tamps, etc.).

Figure 3 illustrates a complete example of Data
Characterization-based fusion. A patient’s data is composed
of physiological sensor readings (as time series), clinical
notes (as text), and an X-ray (as image). Time series fea-
tures (e.g., minimum and maximum), text features (e.g.,
term frequency-inverse document frequency: tf-idf), and
image features (e.g., recognized objects) are extracted, pre-
processed (through scaling, deduplication, and inference of
missing values), and concatenated into a fused feature vector.
The event detection will take this fused vector as its input.

3.2 Transformation-based fusion

Transformation-based fusion mechanisms include a repre-
sentation learning component, first trained on labeled data
to transform each modality into an internal latent represen-
tation. The data fusion occurs only in the second step, by
combining the transformed representations. In the represen-
tation learning setting, the learned models are trained in a
supervised manner to select and transform the input features
into high-level abstractions [121]. These abstract features,

Input Representation Learning Fused representation

-4

Fig. 4 Transformation-based fusion. A representation learning com-
ponent (depicted with three neural networks) embeds a time series, a
textual note, and an image separately. The transformed features are
combined by concatenation

!

OO

@O >>>) (0009

Nees

also known as latent representations, are then used to per-
form downstream tasks, such as event detection.

All the features of a data instance are typically encoded
into a single vector, fed into a representation learning model.
This model applies a series of parameterized transformations
to the computed vector and produces the latent represen-
tation. The obtained representation vector is then used to
perform a downstream task, and the performance of this task
is used to update the parameters of the transformations. Rep-
resentation learning is widely used to handle data in any
modality, such as text, images, and sound [15].

Multimodal representation learning is achieved using neu-
ral network architectures, with distinct models for each
modality. These models transform the input data into latent
representations, which are then fused. For instance, the
authors in [28, 63, 128] transform time series and text
by training two deep neural networks to produce distinct
latent vectors. These transformed representations are then
fused, either by simple concatenation or using an addi-
tional fully connected neural network layer [128]. This
architecture allows for an end-to-end pipeline, integrating
the transformation-based fusion with the downstream event
detection task. During the training phase of the neural
networks, a backpropagation step is iteratively applied to
improve the learned transformation functions.

Figure 4 illustrates this approach using the same medical
example as in Fig. 3. Three neural networks are first trained
to learn to represent each modality. In this example, a recur-
rent model produces an embedding of the time series. The
textual note and image are encoded (using a fully connected
and convolutional network) and are combined by another
fully connected model into a latent representation. This inter-
mediate representation is finally fused with the time series
embedding by concatenation to produce the transformed rep-
resentation vector.

An alternative approach to transformation-based data
fusion mechanisms is used when the transformed features
are manually selected. The authors in [97, 99] first choose
features from the metadata of images (e.g., temporal infor-

@ Springer
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Fig.5 Decision-based fusion. Three distinct event detection scores are
computed on a time series, a textual document, and an image. The
individual scores are combined into a fused vector

mation, geolocation, textual descriptions, etc.). Then, they
compute pairwise similarities within each modality. The rep-
resentation learning occurs on these extracted features. It
constitutes a set of Support Vector Machines (SVMs), each
trained to assign images to event clusters. The result of each
SVM is finally concatenated into a new fused representation
vector [97] or transformed into a graph [99].

3.3 Decision-based fusion

Decision-based fusion consists of fusing event detection
scores, such as labels or probabilities, obtained from each
modality separately. To combine the results at the decision
level, data fusion mechanisms compute averages of the indi-
vidual scores or train a model by taking the individual scores
as input and producing a fused result.

Several approaches are proposed to combine distinct
detection scores. Some authors (e.g., [125]) find that simply
averaging the decisions of each modality yields satisfactory
results. Another type of solutions infuses the combination of
individual scores with information from one of the modal-
ities. For instance, the authors in [86] compute a weighted
sum of anomaly scores, where the weights are proportional
to the distance between sensors in a network. Finally, the
authors in [84, 133] use ensemble learning. They develop
sophisticated models with learnable parameters, fine-tuned
on labeled examples, to combine the scores of several base
models.

Figure 5 illustrates decision-level fusion with the same
medical example introduced previously. For each modality,
an event detection score is produced separately. The three
detection scores are then concatenated into a fused detection
score vector and passed to the downstream model.

All the data fusion techniques introduced above are com-
patible with each of the three categories of multimodal event

@ Springer

detection. Any data fusion mechanism can combine the
different modalities in each of the three categories. The clas-
sification scheme we propose in this survey distinguishes,
first and foremost, between techniques aimed at retrospec-
tive, real-time, or prospective event detection.

4 Multimodal event detection techniques

In this section, we introduce existing multimodal event detec-
tion techniques. For each described technique, we discuss
how the data fusion mechanisms exploit information from
the modalities to detect events.

Table 2 provides a comparative summary of existing
techniques, highlighting how our survey dissects the event
detection field. The column “modality” indicates which data
types are fused by each event detection technique. Each
examined technique uses one of four internal latent data
representations: time series, graphs, learned embeddings,
or tabular values. One of the three “fusion mechanisms”,
introduced in Sect.3 (data characterization-based fusion,
transformation-based fusion, or decision-based fusion), is
used to combine the different modalities.

4.1 Retrospective event detection

The first category of techniques we consider encompasses
approaches to detecting events in past data. Within this
category, we distinguish four families of approaches. (1) Sta-
tistical techniques detect events using probability distribution
and topic modeling. (2) Classification model techniques
assign a class from a pre-defined list of event types to each
data instance. (3) Clustering techniques split all instances
into groups pertaining to the same event in an unsupervised
manner. (4) Embedding-based approaches retrieve instances
matching a textual query through which events are described
in natural language.

4.1.1 Statistical techniques

The techniques from this category use statistical and proba-
bilistic modeling to detect events. A first set of approaches
computes expected baselines and detects events by identi-
fying statistical anomalies deviating from this baseline. A
second set uses probabilistic latent variable models to detect
events.

Cecaj et al. [24] consider the problem of event detection
by fusing temporal and location data. They focus on city life
events using call detail records and Twitter messages. Their
approach considers detecting events whenever the amount of
activity significantly deviates from an established baseline,
fusing the modalities at an early stage to take into account
both location and temporal data. The fusion is achieved by
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fragmenting the observed area into non-overlapping geo-
graphic regions. Within each region, cell phone activity and
the number of social media posts are counted, producing time
series sampled at one-hour intervals.

Their proposed event detection process consists of estab-
lishing baselines of activity within each region when no event
is happening. Seasonality effects are accounted for by com-
puting multiple baselines per region (e.g., for weekdays and
weekends). The final event detection flags statistical outliers
in the time series of each region, based on a significant devi-
ation from the expected baseline.

Han et al. [48] address detecting events in collections of
social media posts, taking into account temporal, location,
and textual data. Their approach fuses the modalities into
internal time series representations and detects events by ver-
ifying whether or not they follow a power law distribution.
The time series are obtained by counting the number of mes-
sages published in close geographic proximity, on similar
topics, and during specific time intervals.

The authors use a characterization-based fusion mecha-
nism, extracting information from each modality in three
stages. First, the authors handle the textual information by
extracting keywords and phrases from Twitter messages. This
text is embedded with a popular pre-trained text embed-
ding technique called fastText [21]. The tweets are then
aggregated into groups of similar tweets based on their
embeddings, using BIRCH [137] as a clustering technique.
Second, within each group, the geographic location is consid-
ered by splitting the tweets into quad-trees [18]—a recursive
decomposition of the space into regions. Finally, the publica-
tion time is included for each region by counting the number
of tweets published therein. This yields a fused latent repre-
sentation with a time series for every region. On the obtained
time series, the event detection resorts to verifying whether
any events follow a power law distribution. To verify this con-
dition, the authors fit a power-law model to each time series
and apply the Kolmogorov Smirnov (KS) Test [30]. An event
is detected whenever the score is above a user-defined p-value
threshold of the KS test.

Yilmaz et al. [132] detect events by fusing textual fea-
tures and geographical coordinates in Twitter networks. They
group messages into event clusters using a generative latent
variable model. Specifically, for each hashtag, the tweets
mentioning it are aggregated to form the set of words used
in all these tweets and as a set of geolocation coordinates
(whenever available).

The authors then assume that every event spawns multiple
hashtags, and the technique learns the underlying data-
generating probability distributions of every modality thatled
to the observed hashtags. An Expectation Minimization (EM)
[85] approach is used to find these statistical parameters by
modeling the word (and location) distribution of every event
over the whole vocabulary (respectively over the possible
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locations). This optimization framework allows the extrac-
tion of the mixture coefficients for every hashtag. Events are
finally described as clusters of hashtags, obtained using the
popular k-means clustering algorithm [81].

Cai et al. [23] highlight the lack of attention given to
images in existing event detection approaches for social
media. They propose an event detection technique fusing
images with textual features, geographical coordinates, and
temporal information. The authors propose STM-TwitterLDA,
amultimodal extension of Latent Dirichlet Allocation (LDA)
[136]. This approach allows LDA to target spatiotemporal
multimodal data from social media.

To include the image data in the proposed LDA model,
visual features are extracted from the images using Convolu-
tional Neural Networks (CNNs) [70]. These embeddings are
then fused with other modalities by modeling each topic as a
mixture of four distributions: hashtags, text, timestamps, and
image representations. Events are detected among the collec-
tion of tweets by modeling topics according to each modality
with this LDA, parametrized with Expectation Maximiza-
tion (EM) parameter estimation [5], and finally labeling the
tweets with this topic model.

4.1.2 Classification-based techniques

Classification-based event detection techniques use super-
vised and semi-supervised Machine Learning (ML) algo-
rithms. They assume a dataset in which instances are labeled
with event classes, and the techniques are trained to assign
event labels to unseen instances.

Oh et al. [84] address the task of detecting events in video
collections, fusing information from the audio and video
streams. Their event detection assigns an event class from
a predefined list to each video. The data fusion intervenes
at the decision level by first extracting features, detecting
events on each modality separately, and combining the pre-
diction scores. The authors achieve the fusion mechanism by
extracting and handling features from the video’s audio and
image streams at different levels of abstraction.

Audio features, starting at the level of spectrum represen-
tations (such as MFCCs [13]), are extracted and represented
as bag-of-words. At a higher level, acoustic segment mod-
els extract encodings of representative audio segments for
the various types of events using Hidden Markov Mod-
els (HMM) [102]. Low-level visual features, such as color
and geometry histograms, and mid-level features, such as
detected objects (e.g., “sailboat”), are represented as sets of
bag-of-words. In addition, higher-level concepts, such as rec-
ognized scene elements in sequences of video frames (e.g.,
“flooded streets”) are learned in an unsupervised manner
with a novel Latent SVM approach. Those features are then
used by SVMs to produce an intermediate event classifica-
tion score for each input modality. These individual scores
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are combined to obtain a final event classification by consid-
ering a maximal figure-of-merit approach and local expert
forest models.

Peng et al. [94] address the problem of detecting events
in collections of textual social media messages. Their tech-
nique fuses textual content with user interaction information
and assigns event labels to instances. Data fusion is achieved
at the feature level by extracting entities and relationships
from the messages to build a heterogeneous graph that takes
into account all modalities. The authors first extract so-called
event elements (keywords, topics, concepts, users) to create
different types of nodes.

To form the graph, nodes of the same type are connected
by edges according to the following criteria. Keyword nodes
are connected whenever two words are synonymous. Nodes
representing topics are connected whenever topics are related
according to the topic model hierarchical LDA (hLDA) [20].
Concepts are identified and retrieved from an external knowl-
edge base and connected according to their relationships
(e.g., “located-in”, “attribute-of™, etc.). User nodes are con-
nected if a relationship exists between them. These entities
are then fused by constructing a heterogeneous information
network (HIN) [116] with the addition of hyper-edges that
connect event elements of all types whenever they co-occur
in the same message.

Using the HIN, the proposed event detection technique
proceeds following a two-step approach. First, a newly
defined similarity metric is computed between all messages
based on the co-occurrence of event elements and their paths
in the HIN. This results in a weighted adjacency matrix, upon
which a Graph Convolutional Network (GCN) [60] is trained
for node classification, where each class corresponds to a
detected event.

Brenner et al. [22] detect events in collaborative image
collections by combining images with textual metadata (e.g.,
descriptions, keywords, titles, etc.), timestamps, and geolo-
cation. They use a classification model to determine whether
an instance corresponds to an event class, defined by a tex-
tual description of the event. The provided event descriptions
are enhanced with external information: topic and keywords
are used as queries on knowledge bases (WordNet [40] and
DBpedia [7]) and location names are converted with geocod-
ing services (GeoNames and Google Geocoding API).

The images are filtered according to their textual annota-
tions by applying a binary linear SVM to determine whether
they pertain to an event described in the textual query. Low-
level visual features (color and edge) are extracted from the
remaining images to obtain their vector representations. In
the final step, these representations and the textual event
descriptions are passed to a binary classifier, determining
whether the image corresponds to the described event.

In between the supervised and the fully unsupervised set-
ting, Yang et al. [131] propose a semi-supervised approach

to mine events from collaborative image collections. Their
approach fuses images, time, geolocation, tags, and user
information. In this semi-supervised setting, only a sub-
set of the instances are labeled with an event class. The
authors use the information in the partially labeled subset to
guide the event detection clustering process for the remaining
instances.

The data fusion process occurs at the feature level by
computing similarity scores between labeled and unlabelled
instances. To characterize unlabeled instances, the authors
first select a labeled instance of each known event class to
serve as a representative of the future event clusters. Unla-
beled instances are then compared to the representative of
each cluster, according to each modality. The similarity for
the temporal modality is obtained by comparing publica-
tion timestamps. Location similarity is computed with the
Haversine distance [1] of their geocoordinates. The tex-
tual information is compared with the Jaccard index [41]
between sets of their annotations tags. A binary score indi-
cates whether the same user uploaded the image. The visual
similarity between images is computed by comparing per-
ceptual hash values [135].

The fusion is achieved by concatenating the similarity
values for each modality into a latent vector. The event
detection on the fused representation is finally achieved with
the unsupervised clustering technique DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [42] to
obtain event cluster assignments for the unseen images.

4.1.3 Clustering-based techniques

Clustering-based techniques use unsupervised data mining
techniques to detect events by aggregating instances into
event clusters. There exist two main approaches that have
been proposed in this context. The first type integrates exist-
ing clustering and community detection algorithms, such as
spectral clustering, into their event detection technique. The
second type of techniques proposes modifying existing clus-
tering techniques to handle multimodal event detection.
Wang et al. [122] investigate the importance of social
interactions for event detection in image collections, fus-
ing images, text, time, location, and social interaction. Their
approach learns similarity scores between instances and uses
them to detect clusters of events. The authors build a social
interaction graph with three node types (tags, images, users)
and directed relationships. Edges exist between images and
associated tags, between similar tags, between users and
images they interact with, and between befriended users.
The social similarity between images is computed using
an extension of Random Walk, called Random Walk with
Restart (RWR) [74] between all the nodes that are active
during the same time window. Feature similarity is obtained
by considering the time difference between images, their

@ Springer



9 Page12o0f25

M. Mondal et al.

geographical distance, the number of common tags, and the
cosine similarity between the term frequency vectors of their
textual descriptions. The proposed event detection technique
learns a combined similarity score between images, which
fuses these social and feature similarities using SVMs. This
score is applied by an incremental clustering technique to
group all images into event clusters.

Petkos et al. [97] aim to detect events from collaborative
image collections. The authors fuse images, their geolo-
cation, publication times, textual descriptions, and titles
to cluster instances into events. The approach integrates a
supervisory signal proceeding in two stages. First, they use
labeled instances (i.e., images with a known event cluster
assignment) to train classifiers and subsequently use the
classification results to cluster unknown instances. Specif-
ically, the authors compute pairwise similarities between all
instances. They do so for each modality and concatenate the
similarity matrices to obtain a feature vector for each pair of
instances. A binary SVM classifier is trained on each pair of
instances to predict whether they belong to the same event.

The second stage consists of fusing modalities at the repre-
sentation level of the instances for which no label is provided.
Similarly to the previous stage, the authors start by com-
puting pairwise similarities between all unlabeled instances
and concatenate the similarity scores of all modalities. The
aforementioned binary classifier is then applied to each pair
of instances, indicating whether the instances should be
assigned to the same cluster for each pair. Concatenating
all the predictions obtained for an individual instance yields
a binary representation vector for each, which takes into
account all modalities. The event detection finally applies
a spectral clustering approach to the learned representation
vectors to assign each instance to an event cluster.

In a follow-up work [99], Petkos et al. extend the event
detection technique [97] introduced above. The authors
improve their approach for detecting clusters of events among
a collection of annotated images by fusing their geolocation,
publication time, and textual descriptions and titles. Similarly
to the original work, pairs of instances are first compared
along each modality, and a binary classifier is trained on
labeled data to learn whether pairs of instances should be
assigned to the same cluster. Unlike the original work, the
prediction for each pair of instances is used as an adjacency
matrix. This way, the modalities are fused by building a graph
where instances are connected if the binary classifier predicts
that a pair should belong to the same cluster. A community
detection algorithm is applied to this graph, yielding the final
event clusters.

In [78], Ma et al. propose SVDMC, a multimodal exten-
sion of the matrix decomposition technique Singular Value
Decomposition (SVD) [65] for detecting events in collabo-
rative image collections by assigning each image to an event
cluster. The authors consider images from Flickr, provided
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with user information, timestamps, geolocations, and textual
tags. The modalities are fused at the feature level after com-
puting similarities between pairs of instances within each
modality.

Specifically, the proposed approach encodes each modal-
ity into a distinct binary adjacency matrix, where the rows and
columns correspond to the images in the dataset. A positive
entry indicates a similarity above a fixed threshold between
the corresponding images using, for example, cosine simi-
larity between pieces of text. The adjacency matrices of all
modalities are fused using a logical addition operation, and
SVDis finally applied to obtain a low-dimensional, fused fea-
ture representation. On these vector representations, events
are detected using k-means by grouping messages into event
clusters. The approach is compared against other clustering
algorithms (such as [10, 32, 99] and [134]).

Yang et al. [130] process collections of images with meta-
data, such as textual descriptions, user identification, and
geolocation. The authors propose a novel combination of
DBSCAN and k-means to detect events. The data fusion
mechanism merges the modalities at the feature level by
computing similarities between instances. The authors use
an exponentially decaying function (Heat Kernel Weighting
[68]) for time differences, the Jaccard index for tag overlaps,
and the Haversine distance for coordinates. The similarities
are computed between instances and the dictionary entry of
each modality (derived from a subset of labeled examples).
This results in a similarity vector per instance for each modal-
ity. Those representations are combined using a multimodal
soft-voting strategy, selecting the most salient features across
all modalities and producing a fused feature matrix.

In the second step, the authors build graph representa-
tions based on the fused feature matrix. They propose a
novel dual graph regularized non-negative matrix factoriza-
tion approach, which learns a dense graph representation of
each instance. Upon these representations, their novel hybrid
clustering algorithm is applied to produce the final event clus-
ters.

Ghaemi et al. [45] detect events in collections of social
media messages. The authors highlight that the standard
density clustering algorithm DBSCAN suffers from reduced
clustering quality when dealing with spatial heterogeneity,
i.e., when the density of the phenomenon significantly fluc-
tuates across the observed regions. Instead, they propose an
extension of DBSCAN called Varied Density-based spatial
Clustering for Twitter data (VDCT). The authors address this
limitation by clustering messages according to geographic
proximity and content similarity. To compute location sim-
ilarity, they consider the Euclidean distance between two
tweets’ locations and use exponential spline interpolation to
determine the search radiuses for the clustering; for text sim-
ilarity, they use the cosine similarity between bag-of-words
representations of their content.
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4.1.4 Embedding-based techniques

Embedding-based techniques handle the task of detecting
events related to user-provided event description queries.
They operate by embedding textual queries with the training
instances in a common latent space. The representations are
then compared, and the instances most similar to the query are
retrieved. Existing techniques in this context handle mostly
video content by fusing visual and audio channels with text
queries.

In [125], Wu et al. detect events of interest in video
collections. The events are described with a textual query
that allows the proposed technique to retrieve the videos
most similar to the prompt. Since the search queries are not
provided during training, the event detection task can be con-
ceived as a zero-shot classification problem, where every
description of an event of interest is considered as a sepa-
rate class, and instances are to be matched to the class. The
data fusion is achieved at the decision level by combining the
prediction scores obtained from each modality.

The authors first extract two sets of features from the
audio and visual channels. On the former, they apply auto-
matic speech recognition for spoken words in the videos and
low-level structural audio feature extraction. Three off-the-
shelf concept detectors are applied to the latter’s frames,
and an optical character recognition system detects writ-
ten words. Furthermore, low-level visual features, such as
motion boundary histograms, are extracted. To handle the
event retrieval task, each feature set and the event query are
embedded into their own feature space and fused by project-
ing them into a common high-dimensional lexicon space.
Subsequently, the learned feature representations of each
modality are compared to an embedding of the textual input
query, yielding a similarity measure. The similarity measures
are finally aggregated with a linear weighted sum to obtain
the final fused similarity score that determines the event clas-
sification.

Elhoseiny et al. [38] address the same task of detect-
ing events described by user-provided queries, combining
text, video, and audio. They embed videos and textual event
description queries into the same distributional semantic
space and match similar items. The authors first split the
visual and audio channels from the videos into two dis-
tinct data streams. They apply optical character recognition
on the former and automatic speech recognition on the lat-
ter, thereby encoding both channels into textual content.
Additionally, they extract visual concepts, such as scenes or
actions, from the videos. The modalities are fused at the rep-
resentation level by jointly learning the embeddings of the
detected objects and extracted text. The embedding allows
event detection to retrieve a ranked list of instances most
similar to the provided event description query.

For the same task, Younessian et al. [133] extract low-level
acoustic and visual features, as well as higher-level informa-
tion, such as textual content on the one hand, namely spoken
words using automatic speech recognition, and acoustic
scenes, such as “engine noise” or “laugh”, on the other. The
authors also apply visual concept detectors to the video’s
image channel, establishing a visual concept signature for
each event. Similarity metrics are computed between the
provided event description and each representation. These
scores are finally fused using a learnable linear combination
to obtain the event detection score.

4.2 Real-time event detection

This section encompasses streaming techniques to detect
events on-the-fly. We distinguish two classes of approaches:
(i) sequential modeling and (ii) approaches relying on
graph processing. Techniques from the first category model
sequences based on prior data and detect an event whenever
new instances exhibit unexpected patterns. Approaches rely-
ing on graph analysis detect events by identifying anomalous
subgraphs or using graph machine learning methods.

4.2.1 Sequential modeling techniques

Sequential modeling-based methods learn a temporary rep-
resentation of a data stream, which is updated incrementally
as new instances come in. Event detection techniques use
sequence models to learn expected baselines and flag devi-
ations from the baseline as a new event. The complexity of
the proposed models ranges from simple moving averages
to approaches using HMM and Recurrent Neural Net-
works (RNN).

In [86], Ould-Ahmed-Vall et al. develop an approach for
detecting anomalous behavior in a region covered by dis-
tributed wireless sensor networks. They integrate localization
information into collections of sensor time series to enhance
the reliability of the event detection mechanism. The fusion
of the temporal and location data occurs at the decision stage.
This is achieved by computing the event detection for each
time series individually and taking into account the relative
location of the sensors in a weighted aggregation score.

The detection procedure works as follows. Each sensor
produces a time series of measurements, upon which statis-
tical anomaly detection is applied to determine whether an
event occurred in the first step. Next, the local time series
are fused with the localization data using a geographically
weighted voting scheme that considers the event detection
response of the neighboring nodes, weighted by the relative
location of a sensor in the network. Thus, a geographical
threshold distribution is derived around each node, which
is finally used to detect the occurrence of local events in
the sensor networks. The proposed approach is assessed on
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a simulated synthetic network of sensors to detect sensor
faults.

Banerjee et al. [9] tackle the problem of detecting events in
an urban setting. They combine video (surveillance footage)
with streams of social media data messages (from Twitter and
Instagram) to detect anomalous events. Data fusion occurs
at the feature level by counting entities in each modality to
obtain a fused time series. Specifically, the authors apply a
pre-trained Convolutional Neural Network (CNN) to identify
and count objects, such as vehicles and people, appearing
in the video streams sampled every second. Social media
posts are divided into regions according to their publication
location and counted at one-second intervals. The internal
representation is obtained by summing up the total counts
of vehicles, persons, and posts every second. Upon fusing
time series, the authors propose an approach relying on a
hidden Markov model (partially observable Markov deci-
sion processes) to trigger the detection of anomalous count
sequences.

In [104], Reuter et al. propose a technique to detect
new events in streams of images annotated with textual
descriptions, titles, timestamps, and tags. The event detec-
tion component maintains an updated list of known events
and compares incoming instances with these events. During
image stream monitoring, an incoming image is sequentially
assigned either to a known event or triggers the detection of
a new one. Data fusion is achieved at the feature level by
comparing a new image to ten representative images from
each of the known event classes. For each class, the authors
compute similarity scores within each modality: the time dif-
ferences (image creation timestamp, upload timestamp), the
geographic distances, and textual differences (cosine similar-
ity of tf-idf vectors of descriptions and titles). The similarity
scores are scaled and fused by concatenating them into a
representation vector.

Event detection decides whether the new image is assigned
to one of the known event classes or if it constitutes a new
event. Given the fused similarity vectors above, an SVM
is trained for each known event to compute the probability
that the new image pertains to that event. Combining these
prediction scores of each intermediate SVM into a new fea-
ture vector allows the final event detection SVM to predict
whether the image should be assigned to one of the known
events or constitutes a new event.

Chen et al. [28] propose a semi-supervised technique to
detect events in road traffic networks. The proposed approach
fuses sequential sensor data streams and social media content
toidentify anomalous events. To achieve this task, the authors
use a neural network architecture based on Long Short-Term
Memory (LSTM) [11, 52], combined with CNNs and a Gen-
erative Adversarial Network (GAN) [39, 67, 92].

In the first stage, embeddings of physical sensor time
series (measuring traffic flows) are learned incrementally
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using two subsequent LSTM networks to represent the sensor
values. The textual content of social media messages (pub-
lished in the relevant regions) is encoded using pre-initialized
word embeddings. These embeddings are fed into a CNN to
learn an intermediate text representation. In parallel, a GAN
is trained in a semi-supervised manner to produce synthetic
sensor readings and text messages, both of which are embed-
ded with the computed encoders.

The data fusion mechanism occurs at the representation
level in the second stage. The authors combine the above time
series embeddings and text embeddings by concatenating
them to obtain a fused latent representation. Finally, a fully
connected neural network is trained on the fused represen-
tation for the event detection classification task. To evaluate
this approach, the authors combine traffic sensor data from
the Caltrans Performance Measurement System and simul-
taneous geotagged social media messages originating from
the same region.

In the clinical setting, Khadanga et al. [63] propose a deep
learning-based technique to detect medical decompensation
events for patients in an intensive care unit. They continu-
ously monitor a patient’s physiological state and combine
it with sequences of textual data provided in clinical notes.
The physiological data comprises various health measure-
ments sampled at regular intervals. The authors propose using
an LSTM network to learn the time series’ embedding. The
textual medical notes are written intermittently at irregular
intervals. A CNN feature extractor is first applied to each note
to embed all previously written notes. To prioritize recent
medical notes, the learned text encodings are combined with
aweighted sum. The latter exponentially decays with the time
duration since the notes’ creation to obtain a single embed-
ding.

The data fusion mechanism intervenes at the representa-
tion level by concatenating the time series and clinical notes’
embeddings. Event detection relies on a fully connected neu-
ral network layer. It takes the fused latent representation as
input and produces a binary classification, assessing whether
the patient’s health is rapidly declining every hour.

4.2.2 Graph processing techniques

Multimodal event detection applies graph processing tech-
niques to encode the multimodal datasets into a graph
representation. It uses either statistics to detect anomalous
subgraphs or graph neural networks to label nodes into event
classes.

Chenetal. [27] propose a technique called Non-Parametric
Heterogeneous Graph Scan (NPHGS) for early event detec-
tion in streams of social media messages. Their approach
extracts a heterogeneous graph from social media data
and detects events by fusing textual content, time informa-
tion, geolocation, and social relationships. Specifically, the
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authors represent entities, such as users, messages, links,
hashtags, and geolocation, as nodes of different types in a
heterogeneous graph. Each node is additionally mapped to a
feature vector at every timestamp (e.g., number of followers,
number of retweets, etc.). Relationships between entities can
also be of different types (e.g., retweets, followers, actions).

To detect events, the heterogeneous graph is mapped into
a sensor network, where each node tracks the changes in its
features and the ones of its neighbors. When no event occurs,
statistical baselines are stored for each node at multiple levels
of temporal granularity. An empirical p-value test is then
computed to quantify how anomalous the feature values of
each node are. A non-parametric scan statistic then uses the
value for each node to identify anomalous subgraphs, which
are, in turn, considered detected events.

Using graph-based statistical anomaly detection, Pan et al.
[89] detect traffic events by combining location and mobil-
ity data, as well as textual social media posts. A preliminary
mining step takes place offline and allows the establishment
of historical baselines. This step derives usual routing trajec-
tories, velocity, and temporal road segment utilization from
GPS location data. A baseline of the usual terms used in social
media posts is also determined. The observed road network
is then modeled as a graph, and deviations from the expected
traffic flow are used to identify anomalous subgraphs dur-
ing runtime. Finally, social media messages published from
these regions are used to detect the type of traffic event that
occurred (e.g., accidents, protests, disasters, etc.).

In [95], Peng et al. extend their work on retrospective event
detection (see [94] in Sect. 4.1.2) to handle streaming appli-
cations. Similarly to their original work, the authors model
the semantic relatedness of social events with a heteroge-
neous graph. In this extension, they apply graph ML to group
incoming instances into event clusters. An internal represen-
tation in the form of a heterogeneous network is built, where
users, time, keywords, topics, and concepts are extracted
from text messages. The extracted entities are enriched with
information from an external knowledge base and are con-
sidered nodes of different types. The data fusion occurs at
the representation level. The authors propose a novel Graph
Convolutional Network (GCN) architecture called Pairwise
Popularity GCN (PP-GCN) to learn pairwise similarities
between nodes of different modalities in the heterogeneous
graph.

The event detection operates on the similarity scores
between nodes learned by the PP-GCN algorithm. The
incoming stream of messages is partitioned into fixed time-
frames. Events are detected during each time window using
a modified version of DBSCAN for heterogeneous data,
and the instances are clustered according to their similar-
ity scores. In addition to clustering the incoming messages,
a similarity threshold between messages is learned to detect

whether an instance should be assigned to an existing or to a
new event cluster.

4.3 Predictive event detection

This section discusses techniques aiming at detecting impend-
ing events. Typically, those techniques regularly evaluate
whether recent observations can indicate future events and
are thus generally formulated as classification tasks. The
techniques for future event detection can be classified into
two broad classes: (i) classical statistical and machine learn-
ing approaches and (ii) more nascent deep neural network-
based approaches.

4.3.1 Classical machine learning-based techniques

Classical statistical and ML approaches often rely on statisti-
cal correlations to produce binary predictions about whether
events are imminent.

In the clinical domain, Chen et al. [26] study the problem
of forecasting acute health events for patients undergo-
ing surgery. The proposed solution predicts the risk of
postoperative bleeding based on physiological parameters,
patient-provided information, and textual clinical notes writ-
ten between the time of admission and the surgery. The
authors fuse time-varying information (e.g., time series of
physiological measurements) with categorical patient data
(e.g., demographic characteristics, test results) and text (e.g.,
medical notes) at the feature level. The time series are con-
verted into vectors of summary statistics (i.e., minimum,
mean, and maximum values), and the categorical values are
concatenated into a vector. To do so, the authors apply an
off-the-shelf natural language processing tool (MedTagger)
[75] to extract relevant medical information from the clini-
cal notes. The three resulting vectors are concatenated into a
fused representation vector, considering all modalities. Event
prediction uses these vector representations to train a Gradi-
ent Boosting Machine (GBM) model [59], which is used to
predict the risk of future health events.

Similarly, Horng et al. [53] propose a system to moni-
tor patient health status and automatically predict imminent
acute health events. Specifically, patient demographic char-
acteristics such as age and gender are taken into account
and combined with vital sign measurements, such as heart
rate and blood pressure, as well as clinical notes describ-
ing the patient’s state and issues. The former are discretized
when necessary and converted to categorical variables. The
authors apply bigram detection to the latter and represent
notes either as term frequencies or as topics, which are fur-
ther derived using topic models. The authors use an SVM
on the combined vector representation for event prediction
to detect imminent sepsis events and alert healthcare profes-
sionals of further triage and intervention.
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Table 3 Datasets description
Dataset Source Modalities Size Domain
MIMIC-ITITI [63, 128] [61] Numerical, text 50’000 Medical
TRECVID 2011 [133] [88] Video, text 40’000 Multimedia
TRECVID 2013 [38, 84, 125] [871 Video, text 98’000 Multimedia
MediaEval 2011 [22,97, 122] [91] Images, text, time 73’645 Social networks
MediaEval 2012 [78,99, 131] [90] Images, text, time 166’332 Social networks
MediaEval 2014 [130] [98] Images, text, time 362’578 Social networks

[

Telecom Big Data challenge 2014 [24]

Location, time, text - Mobility & communication

4.3.2 Deep learning-based techniques

Deep learning-based approaches using CNNs and LSTMs
embed the input modalities before training event detectors
on these learned embeddings. Because of their expensive
training time, these models are often partially pre-trained,
especially for text analysis, where model parameters are fitted
to large datasets beforehand, and pre-trained word embed-
dings are used for inference.

In[106], Rodrigues et al. propose two deep learning archi-
tectures leveraging word embeddings, convolutional layers,
and attention mechanisms to combine text information with
time-series data and predict mobility demand in eventful
urban areas. Their main hypothesis is that text often contains
contextual cues for many of the events and patterns that can
be observed in temporal data and, as such, is instrumental in
predicting time series. The authors represent text data using
well-known GloVe [96] embeddings fed into convolution fil-
ters, max-pooling layers, and finally, an attention layer. The
time series data are fed either to an LSTM or a stack of fully
connected layers and combined with a binary vector indi-
cating whether or not the corresponding value (i.e., mobility
demand) at a given timestamp in the series occurred during
the appearance of an event.

The two latent representations, text and time series, are
then combined using a dense layer to compute a prediction
for the next time interval. Using time series data correspond-
ing to taxi pickups in a given area and event information
extracted from the Web, the authors show that their cross-
modal data fusion technique significantly reduces forecasting
error. Furthermore, their results show that using event infor-
mation extracted from the web helps improve the quality
of the predictions dramatically, significantly outperforming
popular time-series forecasting methods.

In [128], Yang et al. predict mortality events. To exploit
the multimodal nature of electronic medical records, the
authors propose a deep learning-based pipeline that com-
bines patients’ health measurements with clinical notes. The
prediction of mortality events consists of a binary predic-
tion of whether a patient is expected to die during the next
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two days of their stay in the intensive care unit. The pro-
posed approach starts by learning representations of the two
input modalities distinctly. Physiological measurements are
provided as time series with 17 features and are embedded
using LSTM networks. The clinical notes describe patient
symptoms, clinical histories, and medical reports.

The content is encoded using the popular word embed-
ding technique Word2vec [80], trained on a medical citation
dataset. Next, these encodings are passed through a convolu-
tional neural network layer to produce text embeddings. The
data fusion of the two modalities occurs at the level of their
representation, i.e., the embeddings produced by the above
two neural network models are concatenated to produce a
fused latent representation for each patient. Event detection
is achieved with a final fully connected layer, which takes as
input the aforementioned fused representations.

5 Reported results

In this section, we introduce the most common datasets
and metrics used to evaluate multimodal event detection
techniques. Then, we discuss their reported results and the
applicability of the proposed techniques.

5.1 Datasets

Our analysis identified three popular datasets in multimodal
event detection. Some variations of those datasets exist, with
yearly competitions extending the number of data instances
in every iteration. Table 3 summarizes the main properties of
existing datasets.

The MIMIC-III (Medical Information Mart for Intensive
Care) dataset [61] consists of 50’000 patient records col-
lected over 11 years in an intensive care unit. It provides
demographic information, as well as measurements of vital
signs, medical interventions, etc., for each patient. Specif-
ically, the dataset comprises time-series data (e.g., bedside
monitoring), free text (e.g., clinical notes), patient outcome
metrics (e.g., length-of-stay), and categorical features (e.g.,
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clinical diagnostics codes). This dataset is widely used in
evaluating techniques in the medical domain, particularly for
our survey, by the techniques proposed in [63, 128]. These
techniques focus on fusing time series of patients’ physio-
logical measurements with textual clinical notes and patient
demographic information.

The TRECVID datasets are provided yearly as a challenge
with multiple subgoals, one of which is a multimedia event
detection task. The datasets comprise annotated videos from
various sources (namely, BBC, Internet Archive, surveillance
video, and Flickr). Importantly, the dataset includes a list
of pre-defined events with textual descriptions and illustra-
tive video sequences of the event. Event detection techniques
focusing on fusing text with audio and visual channels such
as [38, 84, 125, 133] address the multimedia event detection
task, wherein events described by a textual description are to
be detected in the dataset.

The MediaEval datasets are a benchmarking reference
for detecting social events in annotated image collections.
The 2011 MediaEval dataset [91] comprises 73’645 images
obtained through the Flickr API, originating from Amster-
dam, Barcelona, London, Paris, and Rome. The 2012 dataset
[90] contains 166’332 images published from Barcelona,
Madrid, Hamburg, Cologne, and Hannover. In the 2014 ver-
sion [98], the dataset was composed of two collections, one of
362’578 images, grouped into 17’834 events, and the second
of 110’541 images, provided without event labels. All the
images are annotated with metadata, namely the uploader’s
username, publication timestamps, titles, textual descrip-
tions, tags, and geolocation data. The MediaEval Social
Event Detection challenge addressed by [22, 78, 97, 99, 122,
130, 131] consists of detecting and describing events in these
datasets.

Telecom Italia provides a dataset for event detection in
telecommunications. For a data analytics competition (Tele-
com Big Data Challenge 2014), millions of data points
about SMS, calls, internet connections, energy consumption,
tweets, weather, and mobility were recorded. The dataset
covers two Italian cities (Milan and Trento) in November
and December 2013. It was used in [14, 24] to detect city life
events.

5.2 Metrics

The chosen evaluation metric depends on the event detection
task. In the case of anomaly detection tasks, authors assess the
ability of a given technique to recognize eventful instances
and how well it discards non-eventful instances. Event detec-
tion tasks aggregating instances into event clusters need to
assess how well-separated the clusters are.

To evaluate anomaly identification and classification
tasks, techniques are often compared according to precision—
the proportion of correctly detected events among all instances

positively flagged—as such by [24, 28, 48, 104]. Recall-the
proportion of correctly detected events out of the total num-
ber of ground truth events—is evaluated by [24, 28, 48, 104].
Combining precision and recall in a summary statistic with
the harmonic mean, the F1-score is reported in [94, 95, 104,
122]. Less frequently, the mean average precision, the prob-
ability of missed event detection, and the probability of false
tweet alarm errors are computed to evaluate the event detec-
tion probability technique proposed by [23].

If class probabilities (or event detection probabilities) are
produced instead of class prediction, the subsequent question
will be how to select a threshold to discriminate between a
detected and a rejected event. The receiver operating char-
acteristic curve (ROC) formalizes this selection. Given a
predicted probability for each candidate instance in the test
set, the ROC varies the threshold to obtain a binary clas-
sification. For each threshold, it computes the classifier’s
specificity and recall and plots the true positive rate against
the false positive rate. Such a curve represents the number of
true positive examples that are missed as non-events and the
number of non-events that are misdetected as events for the
threshold values of the class probabilities.

Computing the area under this curve yields the AUC-ROC,
a performance indicator between O and 1. This measure is
reported by [28, 38, 53, 63, 106]. The PR curve plots the pre-
cision against the recall scores obtained in the same manner
as above by varying the binary decision threshold. The area
under this curve (AUC-PR) yields another metric, as reported
in [26, 63, 106, 128].

In the clustering task, cluster quality is evaluated either
externally or internally [103]. In the former case, ground truth
labels are used as external information. When no additional
information is available, internal cluster validation methods
compare the similarities inside and across clusters.

For external cluster validation, most event detection
techniques are evaluated with the Normalized Mutual Infor-
mation (NMI), asin [78, 95,97, 99, 130, 131]. The NMI score
evaluates clustering by computing the amount of information
shared when instances are split according to their label and
when instances are split according to their predicted cluster.
The mutual information score is obtained with Eq. 1, where
X stands for the clusters and Y for the class labels:

Pxy(x,y) )
MI(X;Y)= P , )1 _— 1
(X;Y) }ZYZX Yy (X, ) Og(PX(x)Py(y) (1

MI can be further normalized proportionally to the
marginal entropies of the classes and clusters to obtain a
score between 0 and 1. Alternatively, the MI can be adjusted
to take random clusterings as the baseline with the Adjusted
Mutual Information [120].

In internal cluster validation, the quality is measured
regarding compactness and separation. The former indicates
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how similar instances within a cluster are, while the latter
defines how dissimilar instances within a cluster are from
the ones of another cluster [138]. For instance, the authors
in [45] use the Dunn index [34], Davies-Bouldin index [33],
and Silhouette index [108]. They aim to measure how tightly
knit and how well-separated the various predicted clusters
are.

The Dunn index identifies the sets of clusters with a small
variance between members of the cluster and where the
means of different clusters are sufficiently far apart. It cap-
tures compactness as the maximal distance between instances
of the same cluster and separation as the minimal distance
between clusters. The index is then computed by dividing the
separation by the compactness, i.e.,

min S(Ci,Cj)
1<i<j<m
DI = == 2)
max Ay
1<k<m

Given m clusters, where A; corresponds to the maximal dis-
tance between instances of the same cluster and §(C;, C;)
the distance between the closest instances in clusters C; and
C;. The core limitations of the Dunn index, as highlighted
by Halkidi et al. [47], are its high computational complexity
and its sensitivity to noise in the dataset, which might signif-
icantly affect the distance between instances within the same
cluster A;.

The Davies-Bouldin index measures the ratio between the
within-cluster distances and the between-cluster distances. It
computes the compactness by each instance’s distance to its
cluster’s centroid and separation by the maximal similarity
between instances of different clusters. The score is com-
puted as follows:

I ¢ d(Xi) +d(X;)
DB = - > Maxiy; {—d(q’ i } 3)

i=1

with d (X;) being the distance of all instances in cluster i to its
centroid, d(c;, c;) the distance between centroids of clusters
i and i, and ¢ the number of clusters.

The Davies-Bouldin index assumes clusters with similar
size and density [107]. In case the clusters contain outliers
and noise, the results of this index do not reflect the clustering
quality of the detection.

The Silhouette index captures compactness and separation
by computing how confident the cluster assignment of each
instance is. It compares how similar each instance (x) is, on
average, to the other instances in its cluster (a(x)) with how
similar, on average, it is to the instances in other clusters
(b(x)), averaged over all instances, i.e.,

b(x) —a(x)

SO = X @), 5G))

“
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The Silhouette index is appropriate when the event clus-
ters are far apart [100]. If the clusters are close to each
other or follow a non-conventional form, this index becomes
non-indicative of the performance of the event detection algo-
rithm.

Only a handful of authors evaluate the efficiency of their
proposed algorithm. Elhoseiny et al. [38] do so by measuring
the runtime of their approach and comparing it against their
baselines. Other indicators of event detection during runtime
are the average lead and lag times, as reported by Chen et al.
[27].

5.3 Analysis of Results

Various authors have compared the performance of their tech-
niques against other baselines. Table 4 describes the results
originally reported by the authors of the papers we include
in this survey. We omit papers with no specified numerical
results (e.g., only showing precision-recall curves).

The reported results point to a couple of trends. Whenever
ground truth labels are available, authors can report the preci-
sion, recall, F1, accuracy (Acc.), ROC-AUC, ROC-PR, mean
average precision (MAP), and normalized mutual informa-
tion (NMI). Otherwise, authors rely on clustering quality
metrics such as Dunn, Davies-Bouldin (D-B), and Silhou-
ette (Sil.) indices.

We also observe that the performance of the techniques
in terms of Recall and Precision is always higher than 0.7.
Furthermore, all techniques reporting both metrics achieve
a higher Precision than Recall. This indicates that it is more
difficult to find the relevant events in the dataset (lower recall)
and easier to reject false positives (higher precision).

When comparing cluster quality, the most popular metric
is NMI. Results range from 0.54 to almost perfect, with Yang
et al. [130] reaching 0.99 (out of 1). The authors achieve this
score by infusing their clustering mechanism with labeled
data at the initialization (i.e., by using a semi-supervised
approach). The high AUC-ROC results reported by Chen et
al. [28] in the detection of events in roadway traffic (fusing
road sensor and social media data) is achieved using a semi-
supervised architecture, stressing the high potential of such
techniques for event detection.

Some datasets are inherently more difficult than others.
With an increasing number of modalities, techniques need
to be increasingly sophisticated to extract relevant infor-
mation from each source. For example, results (regarding
AUC-ROC) on the MIMIC-III dataset, consisting of time
series, text, and categorical variables, are generally higher
than those on the TRECVID dataset. Furthermore, we notice
that techniques evaluated on social networks (e.g., using data
from Twitter, Sina Weibo, or Tencent) generally achieve high
results, indicating that the modalities in social media streams
(mainly text, temporal information, and social interactions)
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are prone to easier fusion. Another striking pattern is the
improvement in performance for the yearly MediaEval chal-
lenges, indicative that the increasing size of the dataset allows
for the development of more refined techniques.

6 Application areas

As stated earlier, techniques for multimodal event detec-
tion have applications in several domains. We describe those
applications and highlight common use cases for detecting
social, medical, and multimedia events.

6.1 Social networks

Detecting events on social media is one of the more
widespread event detection applications. On micro-blogging
platforms (e.g., Twitter) events such as breaking news or elec-
tion results are often discussed in real-time as they unfold.
Additionally, collecting social media content generates inher-
ently multimodal datasets, combining timestamped textual
messages with social interaction data, popularity metrics, and
multimedia attachments (e.g., images, video clips, etc.).

We distinguish two types of applications for multimodal
event detection using social media data. The first type of
techniques assigns messages into groups (event clusters or
event classes), either retrospectively on past data (e.g., [23,
45, 94, 132]) or in real-time streams of messages (e.g., [95,
104]). The second set of approaches identifies anomalous
instances pertaining to events retrospectively with [48] and
during runtime with [27].

Social media data can also be combined with external
sources to detect real-world events. Combined with physi-
cal sensor and mobility data, the authors in [28, 89, 106] use
multimodal event detection to detect traffic events. To iden-
tify anomalous behavior in urban spaces, the authors in [9,
24] merge social media streams with surveillance video and
telecommunication data.

6.2 Medical applications

In the medical domain, patients are treated in an intensive
care unit and attached to multiple physiological sensors.
Their medical record is composed of prior health assess-
ments, patient demographic data, as well as past and current
textual clinical notes. Considering historical health data in
combination with up-to-date physiological information can
allow for the prediction of imminent, acute health events and
alert medical staff.

Data fusion is becoming increasingly prevalent thanks to
the increasing availability of physiological sensor data col-
lected during medical procedures. This prevalence is also
explained by the high-stakes need for early intervention and
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prophylactic treatment. Data fusion becomes a necessary
procedure for reliable event detection with the multimodal
encoding of sensor readings, medical imagery, case history,
diagnostics, medical history, and demographic information.
For instance, the technique proposed in [63] is applied to
monitor patient status in real-time and detect acute health
deterioration. The authors consider both medical sensor read-
ings and the clinical notes produced intermittently by the
medical staff.

Another example of potential clinical applications is pre-
sented in [26, 53, 128], where the authors predict imminent
health events by infusing demographic and health data in
textual and numerical form.

6.3 Multimedia events

Multimodal event detection is also applied to mining events
from multimedia archives, such as video and image col-
lections. To handle the task of detecting events in videos,
the proposed techniques in [38, 84, 125, 133] first split the
audio track and image streams to extract meaningful rep-
resentations such as low-level visual and audio patterns, or
higher-level optical character and speech recognition. Event
detection models are then trained on these representations.
Alternatively, the authors in [22, 78, 97, 99, 110, 122, 130,
131] apply multimodal event detection to detect images fused
with their metadata.

7 Research opportunities

In the following, we describe a number of directions that
could improve the research related to multimodal detection.
The directions we describe below aim to foster the repro-
ducibility of results in this field and to adapt multimodal
detection to nascent fields.
Benchmark for multimodal event detection. Our survey
highlights the difficulty in establishing meaningful perfor-
mance rankings of multimodal event detection techniques.
Authors frequently collect their own datasets and evalu-
ate their techniques on them without making them publicly
available. Furthermore, even when public datasets are used,
authors perform experiments on different subsets of the data,
augment the datasets with external information, and report
different performance metrics on a reduced set of modalities.
A potential remedy for the results’ inconsistencies would
be to introduce a new test bed for comparing a curated list
of event detection techniques. The benchmark should ideally
implement a variety of metrics and include a data generator
able to create new synthetic datasets with real-like modalities.
Similar benchmarks have been introduced in other fields such
as anomaly detection [111], imputation of missing values
[66], or similarity search [35].
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Fusion at the hardware level. As described in Sect.4.2,
many data fusion techniques target scenarios where events
must be detected in real-time. For such scenarios, porting
the fusion algorithm to various hardware accelerators might
drastically reduce event detection latency. GPUs are prime
candidates in this context, as they are known to significantly
accelerate many machine learning tasks (both for training
and inference [114]). In [4], for instance, researchers present
a work-in-progress paper describing how GPUs were lever-
aged to accelerate the detection of roadside incidents by
fusing three different data sources. Many related works could
benefit from such acceleration using GPUs to run their fusion
models.

Beyond GPUs, further accelerators could be used to

speed up data fusion and event detection techniques. Next-
generation networking and storage components—perhaps
surprisingly—can today be used to accelerate tasks in large-
scale systems since some of them feature considerable
computational capabilities [73]. We identify smart SSDs,
smart NICs, and smart routers as particularly promising in
our context, as they have all recently been shown to sub-
stantially accelerate a variety of data-intensive tasks [55, 58,
72].
Fusion using IoT edge devices. Another exciting devel-
opment is the wide use of edge devices to power IoT
applications. The deployment of heterogeneous devices at the
edge of the network is significant in our context for two main
reasons: first, the fact that sets of devices running at the edge
take over entire tasks that were traditionally solved centrally
(either on a central server or in the cloud) prompts for a new
kind of distributed computation called edge computing [36].
In edge computing, processing capabilities are pushed to rel-
atively light devices such as sensors or mobile devices. While
response time might be improved using nearby devices, this
also changes how algorithms (e.g., event detection) are run,
as none of the edge devices has full knowledge or control of
the situation at hand. This opens lots of opportunities in terms
of distributing or decentralizing event detection techniques,
leveraging a set of less-capable and self-organizing nodes in
a dynamic fashion.

Second, the wide heterogeneity of the devices used at the
edge makes data fusion a requirement in many scenarios.
In that context, many research opportunities are emerging,
with new devices (e.g., wearables [93]) appearing along with
new modalities requiring a whole new family of data fusion
techniques. One particularly compelling application in this
context is urban edge analytics [29], where mobile devices
(e.g., autonomous cars) collaboratively detect events with the
help of base stations (e.g., smart traffic lights and roadside
units).

8 Conclusion

In this paper, we presented a survey of multimodal event
detection techniques and introduced a new taxonomy of the
field. We distinguish techniques according to their temporal
axis and classify them into three broad categories: retro-
spective, real-time, and forecasting techniques. Our survey
covers a wide range of detection algorithms, from simple
statistical methods to more nascent deep neural network tech-
niques. Additionally, we discussed the data fusion adopted
by each multimodal event detection technique. We iden-
tified three main data fusion mechanisms based on data
characterizations, transformed representations, or occurring
before decision-making. We explained the main differences
between those mechanisms by highlighting their peculiarities
along the event detection pipeline.

Finally, we explored the experimental setup used by the
various techniques we surveyed. We discussed standard
evaluation metrics and reviewed recurring benchmarking
datasets. We also reported the performance of the proposed
techniques and uncovered inconsistencies in the benchmark-
ing setup. This analysis helped us identify limitations of
previous work’s applicability and propose potential future
research endeavors in the multimodal event detection field.
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