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Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat
depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been
theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus
of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence
that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different
psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of
plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain
psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses
are required to produce this effect (e.g., hallucinogenic doses vs. “microdoses”), and how long purported changes in neuroplasticity
last. Finally, we discuss the likely consequences of psychedelics’ effects on neuroplasticity for both patients and healthy people, and
we identify important research questions that would further scientific understanding of psychedelics’ effects on neuroplasticity and
its potential clinical applications.
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INTRODUCTION
Recent decades have seen renewed scientific interest in classic
psychedelics, which include lysergic acid diethylamide (LSD),
psilocybin, 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-methoxy-
N,N-dimethyltryptamine (5-MeO-DMT), and N,N-dimethyltrypta-
mine (DMT), the psychedelic compound in the Amazonian
ayahuasca brew [1]. Classic psychedelics have been shown to
catalyze relatively long-lasting improvements in mental health
after a small number of doses, especially when combined with
psychotherapy [2]. In patients suffering from depression, anxiety
disorders, and addiction, the benefits of psychedelic-assisted
psychotherapy can last for many months or years [3–10].
Additionally, healthy subjects report increased well-being up to
a year after administration of psychedelics in a safe and supportive
setting [11–13].
One leading theory of psychedelics’ lasting effects categorizes

them as “psychoplastogens” which rapidly stimulate a period of
enhanced neuroplasticity, as well as enduring neuroplastic
changes [14, 15]. Neuroplasticity denotes the nervous system’s
ability to reorganize its structure and function and adapt to its
dynamic environment [16]. Throughout the lifespan, neuroplasti-
city is essential for learning, memory, and recovery from
neurological insults, as well as adapting to life experiences [17].
The theory that psychedelics open a window of neuroplasticity
would explain how long-term effects outlast the drug’s presence
in the body, and it is also attractive because disruptions in
neuroplasticity are present in mood disorders and addiction [18].

Neuroplasticity can be investigated at multiple levels of analysis.
At the molecular level, it comprises changes in gene and protein
expression, as well as post-translational modifications [19]. Of
particular importance is brain-derived neurotrophic factor (BDNF),
a neurotrophin that regulates neuronal growth and synaptic
plasticity [20]. Changes in gene and protein expression give rise to
morphological changes, including the formation and modification
of synapses and dendrites [21]. In particular regions, most notably
the hippocampus, neuroplasticity also comprises neurogenesis
[22]. These processes modify neural circuits, ultimately manifest-
ing in learning, memory, and changes in adaptive behavior [19].
Neuroplasticity is crucially activity-dependent at the cellular level,
which translates into experience-dependence at the level of
cognition and behavior: people learn both passively and actively
from their experiences, adjusting patterns of thought, emotion,
and behavior accordingly [17, 23].
In order to effectively harness the potential of psychedelics, it is

imperative to understand how they affect neuroplasticity, as well
as the clinical relevance of these effects. In the present review, we
first evaluate the available evidence concerning whether psyche-
delics enhance neuroplasticity. We then discuss where in the brain
this likely happens, what doses are capable of this, how long the
effects may last, and whether they have meaningful consequences
for emotion, cognition, and behavior, as well as therapeutic
use. Finally, we discuss the advantages and challenges that
psychedelic-induced neuroplasticity presents and identify impor-
tant directions for future research.
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DO PSYCHEDELICS ENHANCE NEUROPLASTICITY?
Classic psychedelics are thought to catalyze a period of
accelerated neuronal growth, enhancing the brain’s capacity for
neuroplastic changes. Studies in animals have shown that LSD,
psilocybin, DMT, and DOI promote the expression of genes related
to synaptic plasticity, including immediate early genes (IEGs) and
BDNF [24–34]. Furthermore, they catalyze a burst of synaptic and
dendritic growth and can increase the strength of long-term
potentiation (LTP) [27, 35–40]. Regarding neurogenesis, results
have been mixed: LSD and DOI had no effect on adult
neurogenesis in rats, and psilocybin was shown to slightly reduce
it in mice [41–43]. By contrast, studies in mice using both DMT and
5-MeO-DMT observed increased neurogenesis [44, 45].
In humans, studies have often relied on peripheral BDNF as a

marker of neuroplasticity, yielding mixed results. Though aya-
huasca increased BDNF levels in both healthy and depressed
people in one study, another found no change [46, 47]. Several
studies have measured the effects of LSD on BDNF, with some
finding an increase [48, 49] and others no change [50, 51]. In two
studies in healthy subjects, comparable doses of psilocybin did
not elevate plasma BDNF in one [50], but did so in the other [52].
This variability may be partially due to the limitations of peripheral
BDNF as a biomarker in pharmacological studies. Though blood
BDNF has been shown to predict brain BDNF under normal
conditions, psychoplastogens may cause an increase in peripheral
BDNF levels without any increase in brain BDNF [53, 54].
Furthermore, BDNF may not correlate with other measures of
cortical neuroplasticity in humans, and blood platelets can store
and release BDNF independently of neurons [55, 56]. Beyond
measuring BDNF levels, neuroimaging studies have found
evidence of altered neural connectivity following treatment with
psilocybin and ayahuasca, which is interpreted as evidence of
drug-induced neuroplastic changes [57–59].
Taken together, animal studies offer moderately strong

evidence that psychedelics promote genes related to neuroplas-
ticity, synaptic strength, and dendritic growth, including BDNF.
However, analyses of peripheral BDNF protein in human studies
have thus far been inconclusive. Future studies in humans could
benefit from protocols which do not rely only on peripheral
markers, but also induce LTP-like changes to index neuroplasticity,
such as paired associative stimulation [60–62] or tetanic sensory
stimulation [63, 64], as well as PET studies with markers of synaptic
density, such as SV2A [65].

HOW DO PSYCHEDELICS ENHANCE NEUROPLASTICITY?
The complex molecular signaling underlying psychedelic-
enhanced neuroplasticity has been thoroughly discussed else-
where [66–69], but we will briefly review the most important
aspects. Psychedelics appear to enhance neuroplasticity via the 5-
HT2A receptor, which also mediates most of their subjective effects
[70–72]. Though relatively low doses of the selective 5-HT2A
receptor antagonist ketanserin do not fully block psychedelic-
induced neuroplasticity [37, 73], higher doses of ketanserin block
it completely [36]. Furthermore, the affinity of different psyche-
delic drugs for the 5-HT2A receptor predicts their individual
potency as psychoplastogens, and 5-HT2A receptor knockout mice
show no signs of enhanced neuroplasticity following treatment
with psychedelics [24, 27, 36].
Psychedelics stimulate 5-HT2A receptors found post-synaptically

on layer 5 and 6 pyramidal neurons, as well as on GABAergic
interneurons [72]. The net effect appears to be excitation of layer 5
pyramidal neurons and increased levels of extracellular glutamate,
resulting in greater stimulation of AMPA receptors [35, 72, 74]. The
precise molecular pathways which may modify neuroplasticity
after 5-HT2A receptor stimulation are not fully understood.
However, one leading hypothesis suggests that the aforemen-
tioned AMPA receptor stimulation triggers a positive feedback

loop: Stimulation of AMPA receptors may enhance BDNF
secretion, which would stimulate TrkB receptors and mTOR, which
in turn would stimulate further BDNF production and sustained
AMPA activation [36, 38]. Sustained activation of both AMPA
receptors and mTOR appears to be necessary for the enhanced
dendritic growth following stimulation with psychedelics [35].
Additionally, activity involving both 5-HT2A and glutamate
receptors, particularly mGlu2, may be essential for psychedelics’
effects on neuroplasticity [66, 75, 76]. These effects likely remain
specific to synapses and circuits expressing 5-HT2A receptors, as
BDNF acts locally and does not diffuse far after release [20, 77].
In addition to 5-HT2A receptors, the effects on neurogenesis

seen with DMT and 5-MeO-DMT could potentially involve other
receptors [42, 43]. DMT has low but functionally significant affinity
for the sigma-1 receptor, an orphan receptor involved in
neuroprotection and neurogenesis [78]. Sigma-1 receptor antago-
nists block DMT’s effects on hippocampal neurogenesis [44, 79],
and sigma-1 receptor activity has also been shown to stimulate
neurogenesis in previous studies [80–82]. The affinity of DMT for
sigma-1 receptors may also not only its effects on neurogenesis,
but also DMT’s neuroprotective effects in a rat model of
stroke [83].
Concerning 5-MeO-DMT, this molecule is unusual among

psychedelics in that it has a nearly 1000-fold higher affinity for
5-HT1A than 5-HT2A receptors, and many of its effects are
mediated by 5-HT1A receptors [79, 84–87]. Hippocampal 5-HT1A
receptors may drive neurogenesis, suggesting that the effects of
5-MeO-DMT on neurogenesis could conceivably occur via potent,
relatively selective activation of 5-HT1A receptors [88, 89]. Addi-
tionally, 5-HT1A receptors are generally inhibitory and tend to have
opposite effects on downstream signaling pathways than 5-HT2A
receptors [90–93]. Many psychedelics show binding affinity for
both 5-HT2A and 5-HT1A receptors [94]. Furthermore, some of
psychedelics’ effects on attention and the visual system may be
mediated by the 5-HT1A receptor [95, 96]. The excitatory and
neuroplastic effects of different psychedelic drugs in any particular
brain region could conceivably depend on whether that region is
richer in 5-HT2A or 5-HT1A receptors [79, 97–101].

WHERE DO PSYCHEDELICS ENHANCE NEUROPLASTICITY?
Because psychedelics promote synapse and dendrite growth in a
5-HT2A receptor-dependent manner, the greatest effects would be
expected in regions with high 5-HT2A receptor expression, i.e., the
neocortex [72, 91, 102]. Data from animal studies thus far supports
this theory, showing relatively robust effects in cortical regions
and smaller, less consistent effects on neuroplasticity elsewhere.

Neocortex
Psychedelics have been shown to enhance dendritic growth,
including spinogenesis, in cortical neurons [36, 40]. In the frontal
lobe specifically, animal studies show that psychedelics upregulate
plasticity-related genes and promote the growth of synapses and
dendritic spines [25, 27, 36, 37, 103]. In the prefrontal cortex (PFC),
several psychedelics have been shown to rapidly upregulate
genes related to neuroplasticity [25, 26, 104]. Pigs exposed to a
hallucinogenic dose of psilocybin showed increased presynaptic
density in the PFC [39]. In humans, PET imaging has shown
that psilocybin increases glutamate signaling in the PFC, which
is theorized to be important for psychedelic-enhanced plasticity
[105].
Other cortical regions likely also show enhanced neuroplasticity

as a function of 5-HT2A receptor density. DOI enhanced expression
of the plasticity-related Arc gene in the whole cortex, as well as in
the parietal cortex specifically [28, 106]. A recent unpublished
study in mice examined expression of c-Fos, an early marker of
neuroplastic processes, after treatment with psilocybin, revealing
strong upregulation in most cortical regions. These included
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sensory visual, auditory, somatosensory, and gustatory areas, as
well as motor and association areas, the anterior cingulate cortex
(ACC), and the insula [107].

Hippocampus
Several studies have focused on the hippocampus, but many
found modest effects compared to the cortex. In the rodent
hippocampus, psilocybin treatment upregulated fewer plasticity-
related transcripts in the hippocampus than in the cortex, and LSD
failed to upregulate immediate early genes associated with
neuroplasticity [24, 25]. Similarly, DOI failed to enhance expression
of Arc in the hippocampus [106]. Treatment with DOI may even
decrease the expression of BDNF in the dentate gyrus, leaving it
unchanged in the rest of the hippocampus [28]. In line with this,
the abovementioned PET study in humans found reduced
glutamate activity in the hippocampus after psilocybin [105].
However, the cortex and hippocampus do not always show this
opposite pattern. Pigs exposed to a hallucinogenic dose of
psilocybin showed increased presynaptic density in both the
hippocampus and the PFC [39]. Additionally, psilocybin has been
shown to strengthen cortico-hippocampal synapses [73].
The reduced tendency toward neuroplastic effects in the

hippocampus might be explained by its greater density of
5-HT1A than 5-HT2A receptors [90, 102]. It is possible that LSD,
DOI, and psilocybin, and perhaps other psychedelics, have pro-
neuroplastic effects in the cortex and other regions richer in
5-HT2A than 5-HT1A receptors, but tend to have modest or even
inhibitory effects in 5-HT1A receptor-dominant areas like the
hippocampus.

Other subcortical regions
Some preliminary unpublished evidence suggests that psychede-
lics may enhance neuroplasticity in a few subcortical regions. In
the aforementioned study of c-fos, psilocybin increased c-fos
expression in the claustrum, locus ceruleus, lateral habenula and
some areas of the thalamus, amygdala, and brainstem [107]. The
pattern of expression changes correlated with 5-HT2A receptor
distribution [107]. Given that c-fos is a relatively unspecific marker,
however, these results should be interpreted with caution, and
more research is necessary to determine how psychedelics affect
neuroplasticity in subcortical regions.
The mesolimbic pathway warrants particular attention due to its

role in addiction. Addiction to drugs of abuse is driven by
neuroplastic changes in dopaminergic neurons of the mesolimbic
pathway [108]. Notably, however, psychedelics do not cause
dependence or addiction [108]. Important mesolimbic areas for
addiction, including the ventral tegmental area, nucleus accum-
bens, and striatum, express relatively few 5-HT2A receptors and are
therefore unlikely to be much affected by psychedelic-induced
plasticity [102, 109]. Additionally, inhibitory neurons projecting
from the PFC to areas of the mesolimbic pathway are much richer
in 5-HT2A receptors [102, 110], and enhanced dendritic growth in
these PFC neurons could conceivably contribute to the anti-
addictive effect observed with psychedelics [3, 10, 111].

At what dose do psychedelics enhance neuroplasticity?
Several studies have investigated how different doses of
psychedelic drugs affect neuroplasticity. In rats, 0.2 mg/kg LSD
promoted neuroplasticity-related changes in gene expression, and
the efficacy increased up to a dose of 1 mg/kg, although some
genes showed a peak effect at lower doses [31–33]. For psilocybin,
a dose of 4 mg/kg was required to induce neuroplasticity-related
changes in gene expression, and the effect also increased in a
dose-dependent manner [25]. DOI also shows a dose-dependent
effect on neuroplasticity [28]. Finally, a presumably sub-
hallucinogenic dose of 1 mg/kg DMT increased functional
plasticity in rat cortical slices, as measured by the frequency and
amplitude of excitatory post-synaptic currents [36].

Though these studies suggest that psychedelics probably
promote neuroplasticity in a dose-dependent manner, clear
dose-response effects on neuroplasticity have not been estab-
lished in humans. Sub-hallucinogenic doses of between 5 and
20 µg LSD produced significant short-term enhancements in
plasma BDNF [48]. However, a similar study using doses of
between 25 µg and 200 µg LSD only found significant effects on
BDNF at 200 µg [49], and another failed to find significant changes
even at this dose [50]. Perhaps using different methods, future
research should seek to clarify the minimum and optimal doses for
stimulating neuroplasticity with different psychedelics. The pro-
spect of non-hallucinogenic “microdoses” which enhance neuro-
plasticity is attractive for certain clinical applications, including
stroke, brain injury, and neurodegenerative disorders [15].
Particularly regarding microdoses, a discussion of dosing

frequency is warranted. While large doses of psychedelics are
not taken chronically due to their intense subjective effects,
microdoses can be taken regularly and have been hypothesized to
enhance neuroplasticity [48, 112]. Chronic dosing with LSD has
been associated with enhanced eyeblink conditioning, as well as
improved avoidance learning and reversal of stress-induced
deficits in synaptogenesis in rodent models of depression
[103, 113, 114]. However, chronic dosing with DMT may cause
retraction of dendritic spines [115]. Additionally, chronic LSD
dosing was associated with upregulation in genes related to
neuroplasticity, but also to schizophrenia [104]. Many animal
studies investigating chronic dosing have not differentiated
between microdoses and hallucinogenic doses, which may be
an important distinction. Nevertheless, further studies should
investigate whether chronic dosing, particularly chronic micro-
dosing, has different effects on neuroplasticity than single doses.

For how long do psychedelics enhance neuroplasticity?
In order to take advantage of a “window of plasticity,” it is
essential to know when this window opens and closes. Evidence
of enhanced neuroplasticity appears within several hours after
exposure to psychedelics (Fig. 1). The earliest changes involve
upregulation of neuroplasticity-related transcripts, which can
occur within one hour [24, 34]. In rats, both LSD and psilocybin
upregulated genes associated with neuroplasticity after 1.5 hours,
particularly in the PFC [25, 33]. BDNF mRNA may become
upregulated slightly later: one study found no change 1.5 hours
after treatment with psilocybin, but others have found increased
expression 2 and 3 hours after treatment with DOI [25, 28, 116].
Changes in cellular morphology have been observed starting

6 hours after stimulation with psychedelics [35]. One study found
no changes in dendritic growth 1 hour after stimulating primary
rat neuronal cultures with LSD, but observed significant changes
in dendritic growth, synaptogenesis, and spinogenesis at several
later time points [35]. In humans, increases in peripheral BDNF
levels have earliest been seen 4 hours after oral administration of
LSD [48, 49].
Though neuroplasticity may increase within several hours, the

peak effect may come some time later. In rat cortical neurons, the
observed increase in synaptogenesis was greater at 24 hours than
at 6 hours post-stimulation, and in female mice, the rate of
dendritic spine formation 3 days after psilocybin treatment is
greater than the rate seen just 1 day after treatment [36, 37]. Other
work has shown that a significant neuronal growth phase occurs
in the 72 hours after initial exposure to psychedelics [35].
Enhanced neuroplasticity may also last for several days. In mice

treated with psilocybin, the rate of dendritic spine formation
remained elevated for 3 days, returning to baseline by 5 days post-
treatment [37]. In humans, both healthy volunteers and depressed
patients show elevated peripheral BDNF levels 2 days following
treatment with ayahuasca [46]. Finally, a study that treated mice
with LSD every other day for 1 month observed long-term
upregulated of neuroplasticity-related genes, including BDNF, in
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the medial PFC 4 weeks after treatment cessation [104].
Additionally, specific markers of neuroplasticity may have different
“windows.” Though BDNF mRNA can become upregulated within
2 hours, the effect may already be gone 24 hours later, and it is
unclear what this means for BDNF protein expression [36].
Upregulation of other plasticity-related genes follows various time
courses, with some genes showing peak expression within a few
hours, others at around 48 hours, and still others at 7 days after
administration [27, 31, 32].
Crucially, new dendrites and synapses formed during the

window of enhanced neuroplasticity can outlast the window
itself. Increased synaptic and dendritic density has been observed
at 72 hours post-treatment in multiple studies [27, 37, 39].
Furthermore, though mice treated with psilocybin returned to
baseline levels of dendritic spine formation within 5 days, new
dendrites formed during that period survived for at least 1 month
[37]. In humans, research has uncovered changes in brain function
which lasted at least 1 month after treatment with psilocybin,
suggesting the presence of lasting neuroplastic changes [57].
These data suggest that various signs of enhanced neuroplas-

ticity arise within 1–6 hours, with changes in gene expression
appearing earliest and changes in cell morphology and synapse
organization arising later. The increased rate of dendritogenesis
may taper off within 5 days, however, neuroplastic changes which
arise during this period of neural growth may last for at least
1 month. However, important questions about the window of
neuroplasticity remain, and future research should aim to define
the temporal dynamics of enhanced neuroplasticity in humans, as
this may be crucial for the timing of psychotherapeutic
interventions.

Consequences of enhanced neuroplasticity
Is enhanced neuroplasticity simply something we can measure, or
does it also have meaningful consequences? Answering this
question is essential for understanding the basis of psychedelics’
long-term effects, however, few studies have related changes in
neuroplasticity directly to behavioral outcomes. In chronically
stressed mice, psilocybin both strengthened cortico-hippocampal
synapses and reduced anhedonia, which may be the result of
improved synaptic strength in reward circuits [73]. Additionally,
DMT has been seen to enhance both neurogenesis and memory
performance [44]. Other studies have reported improvements in
fear extinction learning and reductions in anxious behaviors and
learned helplessness following exposure to psychedelics, while
also observing increased dendritic spine density in separate
cohorts of animals [27, 37, 103]. Finally, the enhanced spinogen-
esis induced by ketamine, which is also a psychoplastogen, has
been associated with reductions in depression-related behaviors

[117, 118]. More research is needed to determine whether the
same could be true for classic psychedelics, and to confirm or
deny the associations between neuroplastic and behavioral effects
suggested in the literature thus far.
In humans, one study found that depressed patients treated

with ayahuasca had elevated BDNF levels which correlated with
their clinical improvements [46]. In another study, psilocybin
lastingly increased connectivity between the PFC and other brain
areas, including limbic and subcortical regions, and these
increases occurred alongside decreases in negative affect and
anxiety [57]. However, one limitation of many of these studies is
the lack of causal inference: though changes in neuroplasticity and
changes in cognition or behavior may occur simultaneously,
whether neuroplasticity mediated those changes remains an open
question for future studies to address.

Further outcomes possibly explained by enhanced
neuroplasticity
Changes in neuroplasticity may also partially explain some other
long-term effects of psychedelics. Psychedelics, combined with
psychotherapy, have shown clinical efficacy in trials for mood
disorders and addiction, and healthy participants also report
improved mood after taking psychedelics [3–6, 10, 119–123].
Enhanced dendritic and synaptic growth in PFC neurons may be a
plausible explanation for this: the PFC is essential for emotional
regulation via its connections with the amygdala and other
subcortical regions [124, 125]. Depression in particular is
characterized by reduced cortical neuroplasticity [56, 126–128],
synapse atrophy in the PFC [18, 129–131], and a reduced ability of
the PFC to regulate limbic areas [132, 133]. Additionally, PTSD,
social anxiety disorder, and generalized anxiety have been
associated with fewer synaptic connections between the medial
PFC and the amygdala, compromising the PFC’s ability to regulate
fear responses [134–136]. In addiction, neuroplasticity in the
circuits between the PFC and the nucleus accumbens, striatum,
and limbic system becomes impaired, reducing PFC modulation of
these regions [137]. Relatively selective dendritic growth on
neurons originating in the PFC may help reverse these deficits,
restoring signaling balance and top-down control over the limbic
system.
Other modest cognitive improvements found after treatment

with psychedelics may also be explained by enhanced neuroplas-
ticity in cortical regions. In animal studies, chronic LSD treatment
has been associated with improvements in learning
[113, 114, 138]. In humans, LSD has improved frontal-dependent
memory retrieval, and unpublished data suggests that it may also
improve reinforcement learning, possibly by enhancing reward
sensitivity [139, 140]. Cognitive flexibility also involves several

$
Upregulation IEGs

Upregulation BDNF mRNA 

Upregulation other
plasticity genes 

Increased BDNF protein

Rate of dendritogenesis,
synaptogenesis, spinogenesis 

Density of synapses,
dendrites, dendritic spines

2h 4h 6h 1d 2d 3d 5d 7d >30d<1h

Significant increase Increase observed
in this time periodNo change

Human study

Fig. 1 Timeline showing the earliest and latest observations of various changes in neuroplasticity following treatment with a single dose
of the serotonergic psychedelics LSD, psilocybin/psilocin, DMT, or DOI. One dot represents one study and time point. Human studies are
shown in yellow; animal and in vitro studies are shown in purple. BDNF= brain-derived neurotrophic factor, IEGs= immediate early genes.
Based on data for synaptic density, it is assumed that rates of dendritogenesis and synaptogenesis also increase at 6 h post-treatment. See
Table S1 for citations.
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circuits originating in the PFC [141, 142], and ayahuasca and
psilocybin have been shown to promote certain aspects of
cognitive flexibility [143–147]. Regular ayahuasca users addition-
ally perform better on tests of behavioral inhibition, cognitive
flexibility, working memory, and executive functioning [147].
Ayahuasca and psilocybin have also been shown to increase
mindfulness, one form of attentional regulation for which the PFC,
but also the ACC is essential [13, 58, 143, 148–150]. It is possible
that dendritic growth in PFC and ACC neurons is responsible for
these effects [59].
Finally, neuroplasticity may not only play a role in positive long-

term effects of psychedelics, but also undesirable ones. Drug-
induced neuroplastic changes in sensory regions could concei-
vably be a factor in psychedelic-induced flashbacks, as well as the
rarer and more severe hallucinogen persisting perceptual disorder
(HPPD), in which some drug effects, including hallucinations and
psychological distress, persist after the drug has been metabolized
[108, 151].

Experience-dependent neuroplasticity
Neuroplastic changes occur in an activity- and experience-
dependent manner [16]. This is an important consideration when
discussing psychedelic-enhanced neuroplasticity, because psyche-
delics themselves can catalyze intense experiences [2]. The
beginning of the window of plasticity falls within the timeline of
many psychedelic drugs’ subjective effects, meaning that at least
some of the psychedelic experience takes place within a highly
plastic brain [1, 152].
Because of this, the experiences people have under psyche-

delics may have more power to re-shape neural circuitry than
everyday occurrences. This possibility comes with opportunities
and challenges. In a safe and supportive setting, psychedelic drugs
can cause personally meaningful, emotionally salient experiences
which can lead to lasting improvements in well-being [11]. Both
patients and healthy volunteers report insights into personal
problems, emotional breakthroughs, reprocessing of traumatic
memories, and feelings of connectedness and empathy for oneself
and others [7, 12, 123, 153–156]. Sometimes this can take the form
of a “helioscope effect” in which people seem to perceive their
experiences in more detail, but are also able to work through
difficult material without becoming overwhelmed [157]. These
effects are commonly described in terms of learning experiences
[154, 158]. Furthermore, mystical experiences, emotional break-
throughs, and insights correlate significantly with positive long-
term effects, independently from the overall intensity of drug
effects [155, 159]. There may be a synergy between enhanced
neuroplasticity and these positive, therapeutic experiences.
However, especially in unsafe settings, psychedelics can also

cause “bad trips” involving intense physical and psychological
distress [160]. Negative psychedelic experiences, in particular
longer ones, are sometimes associated with subsequent negative
changes in well-being, and feelings of anxiety during a
psychedelic experience correlate negatively with therapeutic
effects [12, 160–162]. Along these lines, most people who develop
HPPD report that distressing symptoms appeared after a
frightening acute psychedelic experience [163]. Crucially, not all
negative experiences lead to decreases in well-being; in fact, most
do not, and long-term negative effects are rare [12, 161]. In a
survey of people who had had a challenging experience while on
psilocybin, the duration of the challenging experience was
significantly and negatively correlated with changes in well-
being [161]. This suggests that challenging experiences which
resolve relatively quickly are less likely to cause undesirable
neuroplastic changes, perhaps because overcoming difficult
feelings becomes a positive learning experience. However,
prolonged experiences of anxiety and distress during a state of
heightened plasticity have the potential to be damaging.

Finally, the psychedelic experience itself is not the only
important experience in psychedelic therapy. Enhanced neuro-
plasticity may also make people more responsive to other
therapeutic interventions, including psychotherapy, but poten-
tially also neurorehabilitation after stroke or brain injury [14].
Therapeutic interventions combined with antidepressants,
which also modestly promote neuroplasticity, have been shown
to be more effective than either intervention alone, and the
same is likely true of psychedelics [164, 165]. Enhanced
neuroplasticity, coupled with a psychedelic experience in a safe
setting and accompanying psychotherapy, could ultimately
generate a therapeutic effect that is more than the sum of
its parts.

CONCLUSIONS
Significant progress has been made toward understanding how
psychedelics affect neuroplasticity. Data thus far supports the
theory that psychedelics stimulate dendritogenesis, synaptogen-
esis, and the upregulation of plasticity-related genes in a 5-HT2A
receptor-dependent manner, affecting the cortex in particular. The
window of neuroplasticity appears to open within a few hours and
may last a few days, although neuroplastic changes occurring
during this time may survive for at least a month. Because
neuroplastic changes occur in an experience-dependent manner,
experiences people have during this time may have a greater
psychological impact than they otherwise would. Future research
should attempt to confirm preclinical findings in humans, clarify
optimal doses and specific neuroplastic effects for different
psychedelic compounds, and further explore the consequences
of psychedelic-enhanced neuroplasticity for both patient groups
and healthy people.
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