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A B S T R A C T

We give new examples of manifolds that appear as cross sections of tangent cones of non-
collapsed Ricci limit spaces. It was shown by Colding–Naber that the homeomorphism types
of the tangent cones of a fixed point of such a space do not need to be unique. In fact, they
constructed an example in dimension 5 where two different homeomorphism types appear at
the same point. In this note, we extend this result and construct limit spaces in all dimensions
at least 5 where any finite collection of manifolds that admit core metrics, a type of metric
introduced by Perelman and Burdick to study Riemannian metrics of positive Ricci curvature
on connected sums, can appear as cross sections of tangent cones of the same point.

. Introduction and main results

In this note, we consider pointed Gromov–Hausdorff limits (𝑌 , 𝑑𝑌 , 𝑦) of sequences of pointed 𝑛-dimensional Riemannian manifolds
𝑀𝑖, 𝑔𝑖, 𝑥𝑖) with a lower Ricci curvature bound, i.e.

Ric(𝑔𝑖) ≥ −(𝑛 − 1)
or all 𝑖. Additionally, we require that the limit is non-collapsed, i.e. there exists 𝑣 > 0 such that

vol(𝐵1(𝑝𝑖)) ≥ 𝑣

or all 𝑖. We call such a space (𝑌 , 𝑑𝑌 , 𝑝) a non-collapsed Ricci limit space. The structure of non-collapsed Ricci limit spaces, or Ricci
imit spaces in general, has been studied extensively, see e.g. [1–10], and the references therein.

When studying the structure of the limit space 𝑌 , a central role is played by its tangent cones. A tangent cone at 𝑥 ∈ 𝑌 is
he pointed Gromov–Hausdorff limit of a sequence (𝑌 , 𝑅−1

𝑖 𝑑𝑌 , 𝑥), where 𝑅𝑖 → 0 as 𝑖 → ∞. By Gromov’s precompactness theorem,
ny such sequence has a converging subsequence. Moreover, if 𝑌 is non-collapsed, it was shown by Cheeger–Colding [3] that every
angent cone of 𝑌 is a metric cone, and it follows from work of Ketterer [11] that the cross section of the cone satisfies the curvature
imension condition CD(𝑛 − 2, 𝑛 − 1).

However, even in the non-collapsed case, the tangent cones at a point obtained from different sequences 𝑅𝑖 do not need to
oincide. This was first demonstrated by Perelman [12] and Cheeger–Colding [3], where they constructed a family of metrics on 𝑆3

hose cones all appear as tangent cones of the same point of a non-collapsed Ricci limit space. Subsequently, Colding–Naber [10]
ave further examples, including cones over 𝑆𝑛−1 that isometrically split off precisely R𝑘 for all 0 ≤ 𝑘 ≤ 𝑛− 2, and cones whose cross
ections are not even homeomorphic. The latter was realised by a 5-dimensional limit space that contains a point with two tangent
ones whose cross sections are given by 𝑆4 and C𝑃 2#(−C𝑃 2), respectively. We note that this is in strong contrast to the situation
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of non-collapsed limits of manifolds with a lower sectional curvature bound, where all tangent cones are unique (see [13,14]) and
all spaces of directions are homeomorphic to spheres (see [15]).

The goal of this note is to provide further examples of non-collapsed Ricci limit spaces with non-homeomorphic tangent cones.
To formulate our main result, we first need to recall the notion of core metrics.

Definition 1.1. A Riemannian metric 𝑔 of positive Ricci curvature on an 𝑛-dimensional smooth manifold 𝑀 is a core metric if there
exists an embedded disc 𝐷𝑛 ⊆ 𝑀 such that the induced metric on the boundary of 𝑀 ⧵ 𝐷𝑛◦ is the round metric on 𝑆𝑛−1 and its
second fundamental form is strictly positive.

Based on work by Perelman [16], core metrics were introduced by Burdick [17] in the context of preserving positive Ricci
urvature along connected sums. The known examples of manifolds with core metrics are given as follows:

(1) The sphere 𝑆𝑛 and the compact rank one symmetric spaces C𝑃 𝑛, H𝑃 𝑛 and O𝑃 2 (see [16,17]),
(2) Linear sphere bundles and projective bundles with fibre C𝑃 𝑛, H𝑃 𝑛 or O𝑃 2 over manifolds with core metrics (see [18–20]),
(3) Products of manifolds with core metrics (see [20]),
(4) Connected sums of manifolds with core metrics (see [21]),
(5) Manifolds obtained as boundaries of certain plumbings (see [19,22]),
(6) Certain manifolds that decompose as the union of two disc bundles, such as the Wu manifold 𝑊 5 (see [20]).

Note also that a closed manifold that admits a core metric is simply-connected by [23].
Our main result is the following.

Theorem A. Let 𝑀𝑛
1 ,… , 𝑀𝑛

𝓁 be closed, smooth, 𝑛-dimensional manifolds that admit core metrics. Then there exist a non-collapsed Ricci
limit space (𝑌 𝑛+1, 𝑑𝑌 , 𝑦) and (non-smooth) metrics 𝑑𝑖 on each 𝑀𝑖 such that the cones 𝐶(𝑀𝑖, 𝑑𝑖) all are tangent cones of 𝑌 at 𝑦.

Each of the metrics 𝑑𝑖 is in fact a Riemannian metric with (2𝓁 − 1) singular points which isometrically contains the core metric
n 𝑀𝑖 with the embedded disc removed. The limit space 𝑌 is homeomorphic to the cone over the connected sum

𝑀 = 𝑀1# … #𝑀𝓁#(−𝑀1)# … #(−𝑀𝓁)

equipped with a Riemannian metric with a singularity at the origin. The construction of the metric is based on a technique developed
y Colding–Naber [10] to construct metrics with non-unique tangent cones on a (topological) cone. One of the main requirements
f this technique is the construction of a Ricci closable metric (see Definition 2.1 below) on the cross section. To prove Theorem A,

we will give a general criterion for the existence of a Ricci closable metric on a manifold with an isometric Z∕2-action and apply it
to the Z∕2-action on 𝑀 that interchanges each 𝑀𝑖 with (−𝑀𝑖).

Theorem A shows in particular that for any closed manifold 𝑀 that admits a core metric there exists a (non-smooth) metric
such that the cone 𝐶(𝑀 , 𝑑) is a non-collapsed Ricci limit space, since every tangent cone of the limit space is the limit of an

ppropriate rescaling of the original sequence. In general, it is open on which closed manifold 𝑀 there exists a metric 𝑑 such that
he cone 𝐶(𝑀 , 𝑑) is a non-collapsed Ricci limit space. For example, it was shown in [24] that this is the case for all 3-dimensional
pherical space forms. Moreover, we give further examples in Section 4 below (which, in contrast to the manifolds in Theorem A,

may also be non-simply-connected). On the other hand, by [25] or [1] there is no such metric on R𝑃 2. Further obstructions are
given in [26] if one additionally assumes that the converging sequence is orientable. This is in contrast to the collapsed case, where
t follows from the work of Sha–Yang [27] that for every closed Riemannian 𝑛-manifold (𝑀 , 𝑔) of Ricci curvature at least (𝑛− 1) the

cone 𝐶(𝑀 , 𝑔) is a collapsed Ricci limit space, see Theorem A.1 below. By using Theorem A, we obtain a similar statement in the
on-collapsed case when restricting to simply-connected 4-manifolds.

Corollary B. Let 𝑀4 be a closed, smooth, simply-connected 4-manifold that admits a Riemannian metric of positive scalar curvature. Then
there exists a (non-smooth) metric 𝑑 on 𝑀 such that the cone 𝐶(𝑀 , 𝑑) is a non-collapsed Ricci limit space. Moreover, if 𝑀 is the boundary
of a compact, oriented, smooth 5-manifold, then, after possibly changing the smooth structure on 𝑀 , we can assume that 𝑑 is a smooth
Riemannian metric.

This article is organised as follows. In Section 2 we recall the construction of [10] to construct non-collapsed Ricci limit spaces
with prescribed tangent cones, as well as basic results on Ricci curvature. Further, in Section 3 we establish a criterion for a given

iemannian metric to be Ricci closable and apply this to prove Theorem A. In Section 4 we give further examples of Ricci closable
metrics that are based on known construction methods for Riemannian metrics of positive Ricci curvature. Finally, in the Appendix
we consider the collapsed case and recall the construction of [27].

2. Preliminaries

Following [10], for a non-collapsed Ricci limit space (𝑌 , 𝑑𝑌 , 𝑦) we define 𝛺𝑌 ,𝑦 as the family of metric spaces {(𝑋𝑠, 𝑑𝑠)} such that
(𝑋𝑠, 𝑑𝑠) is a tangent cone of 𝑌 at 𝑦.

Definition 2.1 ([10]). A Riemannian manifold (𝑀𝑛, 𝑔) is Ricci closable if for every 𝜀 > 0 there exists a pointed open Riemannian
manifold (𝑁𝑛+1

𝜀 , ℎ𝜀, 𝑦𝜀) of non-negative Ricci curvature such that the annulus 𝐴1,∞(𝑦𝜀) ⊆ 𝑁𝜀 is isometric to the annulus 𝐴1,∞(𝑜) ⊆
𝐶(𝑀 , (1 − 𝜀)𝑔).
2 



P. Reiser

o

c

m
a

Nonlinear Analysis 252 (2025) 113699 
Note that a Ricci closable Riemannian manifold in particular has positive Ricci curvature.
The main result of [10] is now given as follows.

Theorem 2.2 ([10, Theorem 1.1]). Let 𝛺 be a connected manifold and 𝑋𝑛−1 a closed manifold with 𝑛 ≥ 3. Let {𝑔𝑠}𝑠∈𝛺 be a smooth family
f Riemannian metrics on 𝑋 such that

(1) Vol(𝑋 , 𝑔𝑠) = 𝑉 ≤ Vol(𝑆𝑛−1, 𝑑 𝑠2𝑛−1),
(2) Ric𝑔𝑠 ≥ 𝑛 − 2,
(3) There exists 𝑠0 ∈ 𝛺 such that 𝑔𝑠0 is Ricci closable.

Then there exists a non-collapsing sequence of pointed complete Riemannian manifolds (𝑀𝑛
𝛼 , 𝑔𝛼 , 𝑝𝛼) of Ric ≥ −(𝑛− 1) that Gromov–Hausdorff

onverges to a pointed metric space (𝑌 , 𝑑𝑌 , 𝑦) with 𝛺𝑌 ,𝑦 = {(𝑋 , 𝑔𝑠)}.
We will also need the following gluing result of Perelman [16].

Theorem 2.3 ([16, Section 4], see also [28, Section 2]). Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be Riemannian manifolds of Ric > 0 with compact boundaries
such that there exists an isometry 𝜙∶ 𝜕 𝑀1 → 𝜕 𝑀2. Assume that the sum of second fundamental forms II𝜕 𝑀1

+𝜙∗II𝜕 𝑀2
is non-negative. Then

the 𝐶0-metric 𝑔1 ∪𝜙 𝑔2 on 𝑀1 ∪𝜙 𝑀2 can be smoothed in an arbitrarily small neighbourhood of the gluing area into a smooth metric of
Ric > 0.

Here we use the convention that the second fundamental form of the boundary of a Riemannian manifold (𝑀 , 𝑔) is given by

II(𝑢, 𝑣) = 𝑔(∇𝑢𝜈 , 𝑣),
where 𝑢, 𝑣 ∈ 𝑇 𝜕 𝑀 and 𝜈 is the outward unit normal field of 𝜕 𝑀 . We say the boundary is convex if II is positive definite.

Finally, we recall the following formulae for the Ricci curvatures of a metric on a cylinder, see e.g. [20, Lemma 2.1]

Lemma 2.4. Let 𝑀 be a manifold, 𝐼 an interval and let 𝑔 = 𝑑 𝑡2 + ℎ𝑡 be a Riemannian metric on 𝐼 ×𝑀 , where ℎ𝑡 is a smooth family of
etrics on 𝑀 . Let ℎ′𝑡 and ℎ′′𝑡 denote the first and second derivative of ℎ𝑡 in 𝑡-direction, respectively. Then the second fundamental form of
 slice {𝑡} ×𝑀 with respect to the normal vector 𝜕𝑡 is given by

II = 1
2
ℎ′𝑡 ,

and the Ricci curvature of the metric 𝑔 are given as follows:

Ric(𝜕𝑡, 𝜕𝑡) = −1
2
t rℎ𝑡ℎ′′𝑡 + 1

4
‖ℎ′𝑡‖

2
ℎ𝑡
,

Ric(𝑣, 𝜕𝑡) = −1
2
𝑣(t rℎ𝑡ℎ′𝑡) +

1
2
∑

𝑖
(∇ℎ𝑡

𝑒𝑖 ℎ
′
𝑡)(𝑣, 𝑒𝑖),

Ric(𝑢, 𝑣) = Ricℎ𝑡 (𝑢, 𝑣) − 1
2
ℎ′′𝑡 (𝑢, 𝑣) +

1
2
∑

𝑖
ℎ′𝑡(𝑢, 𝑒𝑖)ℎ′𝑡(𝑣, 𝑒𝑖) −

1
4
ℎ′𝑡(𝑢, 𝑣)t rℎ𝑡ℎ′𝑡 .

Here 𝑢, 𝑣 ∈ 𝑇𝑥𝑀 and {𝑒𝑖} is an orthonormal basis of 𝑇𝑥𝑀 with respect to ℎ𝑡.
In the special case of a doubly warped product metric, we obtain the following.

Lemma 2.5. Let (𝑀𝑛1
1 , 𝑔1) and (𝑀𝑛2

2 , 𝑔2) be Riemannian manifolds and let 𝑓1, 𝑓2 ∶ [0, 𝑡0] → (0,∞) be smooth functions for some 𝑡0 > 0.
Then the Ricci curvatures of the metric

𝑑 𝑡2 + 𝑓1(𝑡)2𝑔1 + 𝑓2(𝑡)2𝑔2

on [0, 𝑡0] ×𝑀1 ×𝑀2 are given by

Ric(𝜕𝑡, 𝜕𝑡) = −𝑛1
𝑓 ′′
1
𝑓1

− 𝑛2
𝑓 ′′
2
𝑓2

,

Ric( 𝑣1𝑓1 ,
𝑣1
𝑓1
) = −

𝑓 ′′
1
𝑓1

+
Ric𝑔1 (𝑣1, 𝑣1) − (𝑛1 − 1)𝑓 ′

1
2

𝑓 2
1

− 𝑛2
𝑓 ′
1𝑓

′
2

𝑓1𝑓2
,

Ric( 𝑣2𝑓2 ,
𝑣2
𝑓2
) = −

𝑓 ′′
2
𝑓2

+
Ric𝑔2 (𝑣2, 𝑣2) − (𝑛2 − 1)𝑓 ′

2
2

𝑓 2
2

− 𝑛1
𝑓 ′
1𝑓

′
2

𝑓1𝑓2

Ric(𝜕𝑡, 𝑣1) = Ric(𝜕𝑡, 𝑣2) = Ric(𝑣1, 𝑣2) = 0,
where 𝑣𝑖 ∈ 𝑇 𝑀𝑖 are unit vectors with respect to 𝑔𝑖. Further, the second fundamental form of a slice {𝑡} ×𝑀1 ×𝑀2 with respect to the unit
normal 𝜕𝑡 is given by

II( 𝑣𝑖𝑓𝑖
,
𝑣𝑗
𝑓𝑗
) = 𝑓 ′

𝑖
𝑓𝑖

𝛿𝑖𝑗 .
3 
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3. A criterion for Ricci closability

In this section we give a criterion for a Riemannian metric to be Ricci closable (Proposition 3.2) and use this to prove Theorem A.
We first slightly reformulate the condition of Ricci closability.

Lemma 3.1. Let (𝑀𝑛, 𝑔) be a closed Riemannian manifold of positive Ricci curvature and suppose that there exists a compact Riemannian
manifold (𝑁 , 𝑔𝑁 ) with convex boundary isometric to (𝑀 , 𝑔). Then there exists 𝑐 > 0 such that (𝑀 , 𝑐2 𝑔) is Ricci closable.

Proof. For 𝑐 > 0 we attach a cylinder ([0,∞) × 𝑀 , 𝑑 𝑡2 + 𝑓 (𝑡)2 𝑔) to 𝑁 , where 𝑓 ∶ [0,∞) → (0,∞) is a smooth function satisfying
𝑓 ′(0) = 2𝑐, 𝑓 ′′

|[0,1) < 0 and 𝑓 ′
|[1,∞) ≡ 𝑐. Then, for 𝑐 sufficiently small, the metric 𝑑 𝑡2 + 𝑓 (𝑡)2𝑔 has positive Ricci curvature near the

boundary {0} ×𝑀 and the sum of second fundamental forms of 𝑔𝑁 and 𝑑 𝑡2 + 𝑓 (𝑡)2𝑔 is positive on 𝑀 by Lemma 2.5. Hence, we can
apply Theorem 2.3 to smooth this metric in a small neighbourhood of the gluing area while preserving positive Ricci curvature in this
neighbourhood. Outside a neighbourhood of the manifold 𝑁 , this metric is then of the form 𝑑 𝑡2 + (𝑐 𝑡+ 𝑐0)2𝑔. Thus, by appropriately
escaling this metric we obtain that the metric 𝑐2𝑔 is Ricci closable. □

Our criterion is now given as follows.

Proposition 3.2. Let (𝑀𝑛, 𝑔) be a closed Riemannian manifold of positive Ricci curvature that admits an isometric action of Z∕2 such
hat the fixed point set 𝑌 ⊆ 𝑀 is a non-empty hypersurface with trivial normal bundle. Then there exists 𝑐 > 0 such that (𝑀 , 𝑐2 𝑔) is Ricci
losable.

Proof. Since 𝑌 is the fixed point set of an isometric action, it is totally geodesic. Moreover, since the normal bundle of 𝑌 is
trivial, cutting 𝑀 along 𝑌 results in a manifold with two totally geodesic boundary components isometric to 𝑌 . By [23] these two
oundary components cannot lie in the same connected component of 𝑀 ⧵ 𝑌 , so 𝑀 decomposes into 𝑀1∪𝑌 𝑀2, where 𝑀1, 𝑀2 ⊂ 𝑀

are submanifolds with common boundary 𝑌 , and the action of Z∕2 yields an isometry 𝜙∶ (𝑀1, 𝑔|𝑀1
) → (𝑀2, 𝑔|𝑀2

).
We now slightly deform the metric 𝑔1 = 𝑔|𝑀1

near 𝜕 𝑀1 = 𝑌 as follows. First, we rescale the metric 𝑔 so that the Ricci curvatures
f the induced metric on 𝑌 are bounded from below by −(𝑛 − 2). A neighbourhood of the boundary 𝜕 𝑀1 can be identified with
0, 𝜀] × 𝑌 such that the metric 𝑔1 is of the form 𝑑 𝑡2 + ℎ𝑡 on this part, where ℎ𝑡 is a smoothly varying family of metrics on 𝑌 . By

Lemma 2.4, since 𝑌 is totally geodesic, we have 𝜕𝑡ℎ𝑡 = 0 at 𝑡 = 0.
Now let 𝑓 ∶ [0, 𝜀] → (0,∞) be a smooth function satisfying

−
𝑓 ′′

𝑓
− (𝑛 − 2) 1 + 𝑓 ′2

𝑓 2
> 0, (3.1)

and such that 𝑓 (0) = 1 and 𝑓 is an even function at 𝑡 = 0. Such a function can for example be obtained as the solution of the initial
value problem

𝑓 ′′ = −𝑓 − (𝑛 − 2) 1 + 𝑓 ′2

𝑓
, 𝑓 (0) = 1, 𝑓 ′(0) = 0,

where we possibly need to choose 𝜀 smaller to ensure that a solution exists, and subsequently smoothing the function 𝑡 ↦ 𝑓 (|𝑡|) on
−𝜀, 𝜀] at 𝑡 = 0 to obtain an odd function at 𝑡 = 0. Since the original function is already 𝐶2 at 𝑡 = 0, the smoothing can be done
2-close, so that (3.1) is still satisfied.

By Lemma 2.5, the metric 𝑑 𝑡2 + 𝑓 (𝑡)2ℎ0 on [0, 𝜀] × 𝑌 has positive Ricci curvature. Hence, since the 1-jets of the metrics 𝑔1 and
 𝑡2 + 𝑓 (𝑡)2ℎ0 coincide on 𝑌 , we can apply the deformation result of [29], see also [30], to deform 𝑔1 through metrics 𝑔𝑠, 𝑠 ∈ [0, 1],

of positive Ricci curvature into a metric 𝑔0 that is of the form 𝑑 𝑡2 + 𝑓 (𝑡)2ℎ0 on [0, 𝜀′] × 𝑌 for some 𝜀′ ∈ (0, 𝜀]. Moreover, since near 𝑌
the metric 𝑔𝑠 defined in [29] is a convex combination of the metrics 𝑔0 and 𝑔1, and since both the metric 𝑔0 and 𝑔1 define a smooth
metric on the double 𝑀1 ∪𝑌 𝑀1, the same holds true for all metrics 𝑔𝑠.

Next, we consider the space 𝑁 = 𝐼 ×𝑀1, where 𝐼 = [0, 𝜋]. Then

𝜕 𝑁 ≅ 𝑀1 ∪𝑌 (𝐼 × 𝑌 ) ∪𝑌 𝑀1 ≅ 𝑀1 ∪𝑌 𝑀1 ≅ 𝑀 .
To obtain a smooth metric on 𝑁 , we choose a smooth function 𝑘∶ [0, 𝜀′] → [0,∞) such that

(1) 𝑘 is an odd function at 𝑡 = 0 with 𝑘′(0) = 1 and 𝑘′′′(0) < 0,
(2) 𝑘(𝜀′) > 0 and all derivatives of 𝑘 vanish at 𝑡 = 𝜀′,
(3) 𝑘′′ < 0 on (0, 𝜀′).

We then define the metric 𝑔𝑁 on 𝑁 by

𝑔𝑁 =

{

𝑘(𝑡)2𝑑 𝑠2 + 𝑑 𝑡2 + 𝑓 (𝑡)2ℎ0, on 𝐼 × [0, 𝜀′] × 𝑌 ,
𝑘(𝜀′)2𝑑 𝑠2 + 𝑔0, else.

Here 𝑑 𝑠2 denotes the standard metric on 𝐼 . Since 𝑘(0) = 0, the metric 𝑔𝑁 is in fact a metric on

(𝐼 ×𝑀1) ∪𝐼×𝑌 (𝐷2
+ × 𝑌 ),

which is diffeomorphic to the space obtained from 𝑁 by smoothing the corners. Here 𝐷2
+ = (R × [0,∞)) ∩𝐷2 is a half-disc and we

identify the interior face (R × {0}) ∩𝐷2 of its boundary with 𝐼 .
4 
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By the boundary conditions of 𝑓 and 𝑘 at 𝑡 = 0, doubling the metric 𝑔𝑁 along its boundary results in a smooth metric on
(𝑆1×𝑀1) ∪𝑆1×𝑌 (𝐷2×𝑌 ), see e.g. [31, Proposition 1.4.7]. In particular, the metric 𝑔𝑁 itself is smooth and has totally geodesic boundary.

oreover, by Lemma 2.5, the metric 𝑔𝑁 has non-negative Ricci curvature, and strictly positive Ricci curvature on 𝐼 × [0, 𝜀′] × 𝑌 .
Hence, by [20, Proposition 2.15], we can deform the metric 𝑔𝑁 into a metric (which we again denote by 𝑔𝑁 ) of strictly positive

icci curvature and convex boundary, while leaving the induced metric on the boundary unchanged.
The induced metric on the boundary is given by the double of the metric 𝑔0. By applying the deformation 𝑔𝑠, we obtain a

eformation through metrics of positive Ricci curvature to the double of the metric 𝑔1, i.e. to 𝑔. Hence, by [18, Theorem C], we
btain a metric of positive Ricci curvature on 𝑁 with convex boundary isometric to 𝑔. In particular, by Lemma 3.1, there exists

𝑐 > 0 so that (𝑀 , 𝑐2 𝑔) is Ricci closable. □

We now apply Proposition 3.2 to the following 2𝓁-fold connected sum.

Proposition 3.3. Let 𝑀𝑛
1 ,… , 𝑀𝑛

𝓁 , 𝑛 ≥ 3, be closed manifolds that admit core metrics. Then there exists a metric 𝑔 of positive Ricci
curvature on the space

𝑀1# … #𝑀𝓁#(−𝑀1)# … #(−𝑀𝓁)

such that for each summand there exists an isometric embedding of ±𝑀𝑖 ⧵𝐷𝑛◦ equipped with the corresponding core metric and such that
𝑐2𝑔 is Ricci closable for some 𝑐 > 0.

Proof. We use Perelman’s “docking station” [16], which, for any 𝓁 ∈ N and 𝜈 > 0 sufficiently small is a metric of positive Ricci
curvature on 𝑆𝑛 ⧵⊔𝓁𝐷𝑛◦ with round boundary components on which the second fundamental form is at least −𝜈. This metric is the
combination of the “neck” of [16, Section 2] and the “ambient space” of [16, Section 3], see also [17, Section 4].

More precisely, the “ambient space” is a doubly warped product metric of positive sectional curvature on the sphere 𝑆𝑛 given
by

𝑑 𝑡2 + cos(𝑡)2𝑑 𝑥2 + 𝑅(𝑡)2𝑑 𝑠2𝑛−2
for 𝑡 ∈ [0, 𝜋2 ] and 𝑑 𝑥2 denotes the standard metric on 𝑆1. The function 𝑅 is a smooth function which is odd at 𝑡 = 0 with 𝑅′(0) = 1
and even at 𝑡 = 𝜋

2 , and satisfies 𝑅′′ < 0. Note that, while the metric is defined a priori on [0, 𝜋2 ] × 𝑆1 × 𝑆𝑛−2, the resulting space is
the join of 𝑆1 and 𝑆𝑛−2, which is indeed the sphere 𝑆𝑛, by the condition 𝑅(0) = 0 (as 𝑅 is odd at 𝑡 = 0).

From this metric one now cuts out 𝓁 small disjoint geodesic balls along the circle {𝑡 = 0}, and for a suitable choice of 𝑅 one can
glue in 𝓁 copies of the “neck metric” on [0, 1] ×𝑆𝑛−1, that transitions to the round metric and a sufficiently small second fundamental
form.

By choosing sufficiently small radii and placing all geodesic balls on one side of the circle, we can restrict this metric to the
hemisphere 𝑆𝑛

+ defined by [0, 𝜋2 ] × 𝑆1
+ × 𝑆𝑛−2, where 𝑆1

+ ⊆ 𝑆1 is a half-circle, and we can still attach 𝓁 disjoint copies of the “neck”.
By choosing 𝜈 sufficiently small, we can now glue 𝑀1 ⧵𝐷𝑛◦,… , 𝑀𝓁 ⧵𝐷𝑛◦ to 𝑆𝑛

+ ⧵⊔𝓁𝐷𝑛◦ using Theorem 2.3, which results in a metric
of positive Ricci curvature on (𝑀1# … #𝑀𝓁)⧵𝐷𝑛◦. Moreover, by the form of the original metric, doubling results in a smooth metric
on

𝑀1# … #𝑀𝓁#(−𝑀1)# … #(−𝑀𝓁),

and interchanging 𝑀1# … #𝑀𝓁 and −(𝑀1# … #𝑀𝓁) defines an isometric Z∕2-action with fixed point set the hypersurface along which
we have glued. Hence, the claim follows from Proposition 3.2. □

Lemma 3.4. Let 𝑀𝑛 be a closed manifold that admits a core metric 𝑔. Then there exists 𝜈 > 0 and a smooth family 𝑔𝑠, 𝑠 ∈ (0, 1], of
Riemannian metrics on 𝑀 ⧵𝐷𝑛◦ with 𝑔1 = 𝑔 such that the following holds:

(1) The volume and the Ricci curvatures of 𝑔𝑠 are bounded from below by positive constants that do not depend on 𝑠,
(2) For all 𝑠 ∈ (0, 1] the induced metric on the boundary 𝑆𝑛−1 = 𝜕(𝑀 ⧵𝐷𝑛◦) is the round metric of radius 1 and the principal curvatures

are bounded from below by 𝜈,
(3) As 𝑠 → 0 the sequence (𝑀 ⧵𝐷𝑛◦, 𝑔𝑠) Gromov–Hausdorff converges to the disc 𝐷𝑛 equipped with a rotationally symmetric Riemannian

metric with a singularity at the origin.

Proof. The proof is an adaptation of [10, Section 4.1]. Let 𝑔 be a metric of positive Ricci curvature on 𝑀 ⧵ 𝐷𝑛◦ with round and
onvex boundary and let 𝜈 > 0 such that the principal curvatures at the boundary are all at least 2𝜈. For 𝑠 ∈ (0, 𝜋

4𝜈 ) we define the
metric ℎ𝑠 on [𝑠, 𝜋

4𝜈 ] × 𝑆𝑛−1 by

ℎ𝑠 = 𝑑 𝑡2 + 2 sin2(𝜈 𝑡)𝑑 𝑠2𝑛−1.
By Lemma 2.5, the Ricci curvatures of the metric ℎ𝑠 are bounded from below by a positive constant independent of 𝑠. The boundary
component {𝑡 = 𝜋

4𝜈 } is round with principal curvatures given by 𝜈, while the boundary component {𝑡 = 𝑠} is, after rescaling, round
with principal curvatures given by −

√

2𝜈 cos(𝜈 𝑠) > −2𝜈. Hence, we can glue the Riemannian manifolds
𝑛◦ 2 𝜋 𝑛−1
(𝑀 ⧵𝐷 , 2 sin (𝜈 𝑠)𝑔) and ([𝑠, 4𝜈 ] × 𝑆 , ℎ𝑠)
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using Theorem 2.3 preserving the lower bounds on the Ricci curvatures. By the explicit form of the smoothing in Theorem 2.3,
see [28, Section 2], we can arrange that the resulting family of metrics is smooth in 𝑠. This family is the required family 𝑔𝑠. □

Proof of Theorem A. For 𝑛 = 2, the statement is trivial as all 𝑀𝑖 are necessarily 𝑆2 (recall that a closed manifold with a core
metric is simply-connected). For 𝑛 ≥ 3, we start with the metric 𝑔 on

𝑋 = 𝑀1# … #𝑀𝓁#(−𝑀1)# … #(−𝑀𝓁)

constructed in Proposition 3.3. We set 𝑀𝓁+𝑖 = −𝑀𝑖 for 𝑖 ∈ {1,… ,𝓁}. For 𝑠̄ = (𝑠1,… , 𝑠2𝓁) ∈ (0, 1]2𝓁 we now define the metric 𝑔𝑠̄
as the metric obtained from 𝑔 by replacing each core metric on 𝑀𝑖 by the metric 𝑔𝑠𝑖 constructed in Lemma 3.4 and smoothing the
gluing area using Theorem 2.3. Then, after suitable rescaling, the family {𝑔𝑠̄} satisfies the requirements of Theorem 2.2, so that we
btain a non-collapsed Ricci limit space (𝑌 , 𝑑𝑌 , 𝑝) satisfying 𝛺𝑌 ,𝑝 = {(𝑋 , 𝑔𝑠̄)}

Moreover, for each 𝑖 ∈ {1,… ,𝓁}, the sequence of metrics 𝑔𝑠̄ with 𝑠̄ = (𝑠,… , 𝑠, 1, 𝑠,… , 𝑠), where the entry 1 is at position 𝑖,
converges to a metric 𝑑𝑖 on 𝑀𝑖 with (2𝓁 − 1) singularities as 𝑠 → 0. In particular, (𝑀𝑖, 𝑑𝑖) ∈ 𝛺𝑌 ,𝑝. □

Proof of Corollary B. As explained in [32], if 𝑀4 admits a Riemannian metric of positive scalar curvature, it is homeomorphic to
ither

#𝓁(𝑆2 × 𝑆2) or #𝑘C𝑃 2#𝓁(−C𝑃 2).

For convenience we outline the argument. First note that, since 𝑀 is simply-connected, its second Stiefel–Whitney class equals its
second Wu class and hence its intersection form is even if and only if it is spin. For the results on 4-manifolds and intersection forms
we will use we refer to [33, Section 1.2].

Since in dimension 4 the signature is a multiple of the 𝐴̂-genus, it follows that 𝑀 has vanishing signature if it is spin. Hence,
the intersection form of 𝑀 is isomorphic to that of #𝓁(𝑆2 × 𝑆2) as they have the same rank, parity and signature. If 𝑀 is non-
spin, its intersection form is odd, and hence its intersection form is equivalent to that of #𝑘C𝑃 2#𝓁(−C𝑃 2) by Donaldson’s theorem
see [34], [33, Theorem 1.2.30]). Hence, by Freedman’s theorem (see [35], [33, Theorem 1.2.27]), 𝑀 is homeomorphic to #𝓁(𝑆2×𝑆2)

when it is spin, and to #𝑘C𝑃 2#𝓁(−C𝑃 2) when it is non-spin. By [17,20,21] all of these spaces admit core metrics, hence the first
laim follows from Theorem A.

For the second claim, assume that 𝑀 bounds a compact, oriented 5-manifold. Then 𝑀 has vanishing signature. Further, since the
signature is an oriented homeomorphism invariant, it follows that 𝑀 is homeomorphic to one of #𝓁(𝑆2 × 𝑆2) and #𝓁C𝑃 2#𝓁(−C𝑃 2).

ll these manifolds admit Ricci closable metrics by Proposition 3.3 and Proposition 4.3 below. □

4. Further examples of Ricci closable manifolds

In this section, we collect results to construct Ricci closable manifolds. The proofs directly follow from well-known construction
methods for positive Ricci curvature. We therefore omit most of the proofs.

Proposition 4.1. Let 𝐸
𝜋
←←←←←←←→ 𝐵 be a fibre bundle with fibre 𝐹 and structure group 𝐺 such that 𝐸 is closed. Suppose the following:

(1) 𝐵 admits a Riemannian metric 𝑔𝐵 of positive Ricci curvature,
(2) 𝐹 admits a 𝐺-invariant metric 𝑔𝐹 of positive Ricci curvature,
(3) There exists a compact Riemannian manifold (𝐹 , 𝑔) of positive Ricci curvature with convex boundary isometric to (𝐹 , 𝑔𝐹 ) such that

the 𝐺-action on 𝐹 extends to an isometric action on 𝐹 .

Then 𝐸 admits a Ricci closable metric 𝑔𝐸 such that (𝐸 , 𝑔𝐸 )
𝜋
←←←←←←←→ (𝐵 , 𝑐2𝑔𝐵) is a Riemannian submersion with totally geodesic fibres isometric

to 𝑐′2𝑔𝐹 for some 𝑐 , 𝑐′ > 0.
This follows for example from the methods of [36, Section 9.G], [37, Theorem 2.7.3], [38] to lift metrics of positive Ricci

urvature along fibre bundles.
In particular, the assumptions of Proposition 4.1 are satisfied when 𝜋 is a linear 𝑆𝑝-bundle with 𝑝 ≥ 2 whose base admits a

iemannian metric of positive Ricci curvature. Indeed, by setting 𝑔𝐹 = 𝑑 𝑠2𝑝 and 𝐹 = 𝐷𝑝+1 equipped with the induced metric of a
eodesic ball in the round sphere of some suitable radius condition (3) is satisfied. In the case of a 1-dimensional fibre we have the
ollowing result:

Proposition 4.2. Let 𝐸
𝜋
←←←←←←←→ 𝐵 be a principal 𝑆1-bundle such that 𝐵 is closed and admits a Riemannian metric 𝑔𝐵 of positive Ricci curvature

nd 𝐸 has finite fundamental group. Then 𝐸 admits a Ricci closable metric 𝑔𝐸 such that (𝐸 , 𝑔𝐸 )
𝜋
←←←←←←←→ (𝐵 , 𝑐2𝑔𝐵) is a Riemannian submersion

or some 𝑐 > 0.

Proof. As in Proposition 4.1, the corresponding linear 𝐷2-bundle 𝐸 has positive Ricci curvature when we equip it with a submersion
etric with totally geodesic fibres equipped with the metric of a sufficiently small round hemisphere (see e.g. [36, 9.59 and 9.70]).

Here we can freely choose the principal connection. In particular, the boundary 𝐸 is totally geodesic as well. If we choose this
6 
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metric to have harmonic curvature form, the induced metric on the boundary has non-negative Ricci curvature by [39] and this
metric can be deformed to have positive Ricci curvature by [40]. Hence, by the deformation of [20, Proposition 2.15], followed by
 small deformation that makes the Ricci curvatures on 𝐸 positive, we obtain a metric on 𝐸 with the required properties. □

Proposition 4.2 can for example be applied to connected sums

𝐿(𝑚; 1, 𝑛+1⋯ , 1)#𝓁(𝑆2 × 𝑆2𝑛−1)

when 𝑚 is odd or 𝑛 is odd, and to
𝐿(𝑚; 1, 𝑛+1⋯ , 1)#𝓁(𝑆2 ×̃ 𝑆2𝑛−1)

when 𝑚 and 𝑛 are even, where 𝑆2 ×̃ 𝑆2𝑛−1 denotes the total space of the unique non-trivial linear 𝑆2𝑛−1-bundle over 𝑆2 and 𝓁 ∈ N0.
Indeed, by [41, Theorems A and B], these manifolds are total spaces of principal 𝑆1-bundles over #𝓁+1C𝑃 𝑛.

When 𝑚 = 1 this shows that the manifold #𝓁(𝑆2 × 𝑆2𝑛−1) admits a Ricci closable metric for all 𝓁 ≥ 0. By Proposition 3.3 the
same holds for connected sums of other products of spheres when 𝓁 is even. We now extend this to odd values of 𝓁 and arbitrary
dimensions of the spheres involved.

Proposition 4.3. For 𝑝, 𝑞 ≥ 2, 𝓁 ≥ 0, there exists a Ricci closable metric on the connected sum #𝓁(𝑆𝑝 × 𝑆𝑞).

Proof. If 𝓁 is even, this follows from Proposition 3.3 since there is an orientation-preserving diffeomorphism 𝑆𝑝 ×𝑆𝑞 ≅ −(𝑆𝑝 ×𝑆𝑞).
Hence, it remains to consider the case where 𝓁 is odd.

For that we use the construction of Sha–Yang [27] (see also [42, Section 5.5] for a discussion of this result), where #𝓁(𝑆𝑝 × 𝑆𝑞)
s constructed as the manifold obtained from (𝓁 + 1) surgeries on the second factor of 𝑆𝑝+1 × 𝑆𝑞−1, i.e.

#𝓁(𝑆𝑝 × 𝑆𝑞) ≅
((

𝑆𝑝+1 ⧵
⨆

𝓁+1
𝐷𝑝+1◦

)

× 𝑆𝑞−1

)

∪⊔𝓁+1(𝑆𝑝×𝑆𝑞−1)
⨆

𝓁+1
(𝑆𝑝 ×𝐷𝑞).

The starting point for the construction is the round metric on 𝑆𝑝+1, from which (𝓁+ 1) pairwise disjoint geodesic balls are removed.
After taking the product with 𝑆𝑞−1 equipped with a round metric of sufficiently small radius, (𝓁 + 1) copies of (𝑆𝑝 ×𝐷𝑞), equipped

ith suitable metrics that glue smoothly with the metric on (𝑆𝑝+1 ⧵ ⊔𝓁+1𝐷𝑝+1◦) × 𝑆𝑞−1, are attached.
Since we can freely choose the positions and radii of the geodesic balls in 𝑆𝑝+1, we can arrange that, since (𝓁 + 1) is even, each

one gets mapped to another one under the isometric Z∕2-action on 𝑆𝑝+1 given by reflection along the equator. In this way we obtain
a metric of non-negative Ricci curvature, and strictly positive Ricci curvature if 𝑞 > 2, on the glued space that is invariant under a
Z∕2-action, whose fixed point set is given by 𝑆𝑝 ×𝑆𝑞−1 equipped with the product of two round metrics. For 𝑞 = 2 one additionally
applies the deformation results of [43], which, as explained in [43, p. 20], can be arranged to preserve the Z∕2-invariance of the
metric. Hence, we can apply Proposition 3.2 to obtain a Ricci closable metric on #𝓁(𝑆𝑝 × 𝑆𝑞). □

Finally, we consider Ricci closable metrics with large isometry group.

Proposition 4.4. Let 𝐺∕𝐻 be a homogeneous space with compact Lie groups 𝐻 ⊆ 𝐺 such that the fundamental group of 𝐺∕𝐻 is finite.
uppose that there exists a subgroup 𝐻 ⊆ 𝐾 ⊆ 𝐺 such that 𝐺∕𝐾 has finite fundamental group and 𝐾∕𝐻 is diffeomorphic to a sphere of
imension 𝑑 ≥ 1. Then 𝐺∕𝐻 admits a homogeneous metric that is Ricci closable.

This follows from [44], since under these assumptions the manifold 𝐺∕𝐻 is the boundary of the cohomogeneity one manifold
𝐺 ×𝐾 𝐷𝑑+1, where 𝐷𝑑+1 is identified with the cone over 𝐾∕𝐻 .

For example, Proposition 4.4 can be applied to the quotient of 𝑆4𝑛−1 ⊆ H𝑛 by the standard action of the binary dihedral group
 𝑖𝑐𝑚 ⊆ 𝑆3 = 𝑆 𝑝(1). Indeed, this space is the homogeneous space 𝐺∕𝐻 = 𝑆 𝑝(𝑛)∕𝑆 𝑝(𝑛 − 1)𝐷 𝑖𝑐𝑚, and the group 𝐾 is given by

𝑆 𝑝(𝑛 − 1)𝑃 𝑖𝑛(2).

Proposition 4.5. Let 𝑀 be a closed manifold that admits a cohomogeneity one action of a compact Lie group 𝐺 such that the orbit space
∕𝐺 is homeomorphic to the interval [−1, 1] and such that both 𝑀 and its principal orbits have finite fundamental group. Suppose that the

ssociated group diagram 𝐻 ⊆ 𝐾± ⊆ 𝐺 satisfies 𝐾+ = 𝐾−. Then 𝑀 admits a 𝐺-invariant Riemannian metric that is Ricci closable.

See e.g. [44, Section 1] for an introduction to cohomogeneity one manifolds. The proof then directly follows from the construction
in [44] together with Proposition 3.2 since the Z∕2-action that interchanges the two halves 𝜋−1([−1, 0]) and 𝜋−1([0, 1]), where
𝜋 ∶𝑀 → 𝑀∕𝐺 denotes the projection, is isometric and has fixed point set 𝐺∕𝐻 .

For example, Proposition 4.5 can be applied to C𝑃 𝑛#(−C𝑃 𝑛), which has group diagram 𝐻 ⊆ 𝐾± ⊆ 𝐺 with 𝐻 = 𝑈 (𝑛 − 1),
𝐾+ = 𝐾− = 𝑈 (𝑛 − 1)𝑈 (1) and 𝐺 = 𝑈 (𝑛). In fact, since the principal orbits have codimension two, it follows from the construction
in [45] that we can construct a Ricci closable metric that has non-negative sectional curvature.
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Appendix. Tangent cones of collapsed Ricci limit spaces

In the context of surgery on manifolds of positive Ricci curvature, Sha–Yang [27] constructed a metric on 𝑆𝑛 × 𝐷𝑚 of Ric ≥ 0
that is close to the product 𝐶(𝑆𝑛, 𝑑 𝑠2𝑛) × (𝑆𝑚−1, 𝑅2𝑑 𝑠2𝑚−1) for some 𝑅 > 0 near the boundary. A consequence of this construction is
the following theorem. We include its proof for convenience.

Theorem A.1. Let (𝑀𝑛, 𝑔) be a closed Riemannian manifold with Ric ≥ (𝑛 − 1). Then, for any 𝑚 ≥ 2 there exists a complete Riemannian
metric of Ric ≥ 0 on 𝑀 × R𝑚 with asymptotic cone given by 𝐶(𝑀 , 𝑔).

Proof. Let 𝛼 = 2 𝑛−1
𝑚 and let 𝑓 ∶ [0,∞) → R be the unique solution of the initial value problem

𝑓 ′′ = 𝛼
2
𝑓−𝛼−1,

𝑓 (0) = 1,
𝑓 ′(0) = 0.

Further, let ℎ∶ [0,∞) → R be the function

ℎ = 2
𝛼
𝑓 ′

and define the metric 𝑔𝑓 ,ℎ on [0,∞) × 𝑆𝑚−1 ×𝑀 by

𝑔𝑓 ,ℎ = 𝑑 𝑡2 + ℎ(𝑡)2𝑑 𝑠2𝑚−1 + 𝑓 (𝑡)2 𝑔 .

By the initial conditions of 𝑓 we have ℎ(0) = 0 and ℎ′(0) = 1, and by the defining equation of 𝑓 we obtain inductively that at 𝑡 = 0
the function ℎ is odd and 𝑓 is even. Therefore, the metric 𝑔𝑓 ,ℎ defines a smooth metric on R𝑚 ×𝑀 .

By Lemma 2.5, the Ricci curvatures of the metric 𝑔𝑓 ,ℎ are given as follows:

Ric(𝜕𝑡, 𝜕𝑡) = −(𝑚 − 1)ℎ
′′

ℎ
− 𝑛

𝑓 ′′

𝑓
,

Ric( 𝑢ℎ ,
𝑢
ℎ ) = −ℎ′′

ℎ
+ (𝑚 − 2) 1 − ℎ′2

ℎ2
− 𝑛

ℎ′𝑓 ′

ℎ𝑓
,

Ric( 𝑣𝑓 ,
𝑣
𝑓 ) = −𝑓 ′′

𝑓
+

Ric𝑔(𝑣, 𝑣) − (𝑛 − 1)𝑓 ′2

𝑓 2
− (𝑚 − 1)ℎ

′𝑓 ′

ℎ𝑓

≥ −
𝑓 ′′

𝑓
+ (𝑛 − 1) 1 − 𝑓 ′2

𝑓 2
− (𝑚 − 1)ℎ

′𝑓 ′

ℎ𝑓
,

Ric(𝜕𝑡, 𝑢) = Ric(𝜕𝑡, 𝑣) = Ric(𝑢, 𝑣) = 0,

where 𝑢 ∈ 𝑇 𝑆𝑚−1 and 𝑣 ∈ 𝑇 𝑀 are unit vectors with respect to 𝑑 𝑠2𝑚−1 and 𝑔, respectively.
Integrating the equation 𝑓 ′′𝑓 ′ = 𝛼

2 𝑓
−𝛼−1𝑓 ′ now shows that

𝑓 ′2 = 1 − 𝑓−𝛼 .

Further, we have
1 − ℎ′2

ℎ2
= 𝛼2

4
1 − 𝑓−2𝛼−2

1 − 𝑓−𝛼 ≥ 𝛼2

4
𝑓−𝛼−2, ℎ′′

ℎ
= −𝛼(𝛼 + 1)

2
𝑓−𝛼−2,

ℎ′𝑓 ′

ℎ𝑓
= 𝛼

2
𝑓−𝛼−2.

Using this a calculation shows that all Ricci curvatures are non-negative.
Finally, since 𝑓 ′′ > 0, we have 𝑓 (𝑡) → ∞ as 𝑡 → ∞, and therefore 𝑓 ′(𝑡) → 1 and ℎ(𝑡) → 2

𝛼 as 𝑡 → ∞. This shows that 𝑅2𝑔𝑓 ,ℎ
converges to the cone 𝐶(𝑀 , 𝑔) as 𝑅 → 0. □

Remark A.2. Similar arguments using the generalisations of [27] given in [19,46] show that 𝑀 × R𝑚 in Theorem A.1 can be
replaced by 𝑀 × int (𝑁), where 𝑁 is a compact manifold with boundary that admits a Riemannian metric of positive Ricci curvature
such that on the boundary the second fundamental form is non-negative and the induced metric has positive Ricci curvature (e.g.
if 𝑁 = 𝑁 ′ ⧵𝐷𝑚◦ and 𝑁 ′ admits a core metric).

Data availability

No data was used for the research described in the article.
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