
Received: April 12, 2024. Revised: September 24, 2024. Accepted: September 26, 2024

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

International Mathematics Research Notices, 2024, 2024(22), 14115–14137

https://doi.org/10.1093/imrn/rnae231
Advance access publication date 18 October 2024

Article

Positive Ricci Curvature on Twisted
Suspensions
Philipp Reiser*

Department of Mathematics, University of Fribourg, Switzerland
*Correspondence to be sent to: e-mail: philipp.reiser@unifr.ch
Communicated by John Lott

The twisted suspension of a manifold is obtained by surgery along the fibre of a principal circle bundle
over the manifold. It generalizes the spinning operation for knots and preserves various topological
properties. In this article, we show that Riemannian metrics of positive Ricci curvature can be lifted
along twisted suspensions. As an application we show that the maximal symmetry rank of a closed,
simply connected Riemannian manifold of positive Ricci curvature is (n − 2) in all dimensions n ≥ 4.
Further applications include simply connected 6-manifolds whose homology has torsion, (rational)
homology spheres in all dimensions at least 4, and manifolds with prescribed third homology.

1 Introduction and Main Results
Spinning, which was first introduced by Artin [1] (see, e.g., [15]), is a useful tool in knot theory to
construct a higher dimensional knot out of a given knot. A similar construction can be made for any
given manifold. Roughly speaking, the p-spinning of a manifold M is the manifold obtained from M × Sp

by surgery along {x} × Sp for some x ∈ M; see, for example, [43, 44]. One can further generalize this
construction by replacing the product M × Sp by a linear sphere bundle with fibre Sp and base M.

In the special case p = 1, the 1-spinning operation is called suspension in [13] and denoted by �0M due
to its resemblance with the classical suspension operation for topological spaces. Indeed, the operation
�0 increases the dimension by 1, preserves many of the topological properties of the original manifold
and maps spheres to spheres. The corresponding generalized spinning operation was subsequently
called the twisted suspension in [16] and denoted �eM, where e ∈ H2(M;Z) is the Euler class of the principal
S1-bundle over M on which surgery is performed. In both articles [13] and [16] the (twisted) suspension
naturally appears in the study of free circle actions.

When considering these operations in the context of curvature, it was shown by Sha–Yang [40] that
Riemannian metrics of positive Ricci curvature can be lifted along a generalized p-spinning operation
for any p ≥ 2 and along the classical 1-spinning operation, that is, the suspension �0. The main result of
this article is the following theorem, which completes the Sha–Yang result to all generalized spinning
operations.

Theorem A. Let M be a closed manifold of dimension n ≥ 3 that admits a Riemannian metric
of positive Ricci curvature and let e ∈ H2(M;Z). Then the twisted suspension �eM admits a
Riemannian metric of positive Ricci curvature.

In fact, we will show that for any � ∈ N0 the connected sum �eM#�(S2 × Sn−1) admits a Riemannian
metric of positive Ricci curvature, see Corollary 3.2 below.
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14116 | P. Reiser

Theorem A cannot be extended to the case n = 2. Indeed, by Lemma 2.5 below, the fundamental
group of �0RP2 is isomorphic to Z, which, by the theorem of Bonnet–Myers, implies that this space does
not admit a Riemannian metric of positive Ricci curvature.

The main difficulty in the proof of Theorem A, when compared to the Sha–Yang result, lies in the
fact that for a principal S1-bundle it is not clear if there exists a submersion metric of non-negative
Ricci curvature with totally geodesic fibres which is a product metric on a given local trivialization, that
is, whether it is possible to bring the metric into a “standard form” on the part where the surgery is
performed. We will therefore use a doubly warped submersion metric approach where we additionally
need to “untwist” the metric locally when performing the surgery.

Remark 1.1. In [13] and [16] another suspension operation, denoted �1 and �̃e, respectively, is
introduced, which is obtained by additionally twisting the normal bundle trivialization in
the surgery process. This operation can be seen as an analogue of twist spinning for knots
introduced by Zeeman [47]. We note that it remains open whether positive Ricci curvature can
be lifted along these suspension operations. However, in some cases the suspensions �e and
�̃e in fact coincide (see Remark 2.8 below), showing that Theorem A extends to �̃e in these
cases.

We can use Theorem A to construct examples of Riemannian manifolds of positive Ricci curvature
with an isometric torus action of low cohomogeneity. Recall that the symmetry rank of a Riemannian
manifold, which was introduced by Grove and Searle [20], is the rank of its isometry group. It was
asked in [11] and [27] what the maximal symmetry rank for a closed, simply connected n-dimensional
Riemannian manifold of positive Ricci curvature is. By [11, Corollary D] (see also [27,p. 23] and [28,p.
3796]), it is given by (n − 2) in dimensions n = 4, 5, 6, and in dimension n ≥ 7 it lies between (n − 4) and
(n−2). We can now use the twisted suspension to show that it is given by (n−2) in all dimensions n ≥ 4.

For that we first note that the twisted suspension admits a circle action induced from the free circle
action on the principal S1-bundle used in its definition, and the metric constructed in the proof of
Theorem A is invariant under this action. In particular, the manifold

#�(S2 × S2) ∼= �0S3#�(S2 × S2)

admits a Riemannian metric of positive Ricci curvature that is invariant under a circle action. As pointed
out by Michael Wiemeler, this fact can be used in conjunction with the lifting results of Gilkey–Park–
Tuschmann [19] by taking principal torus bundles over this manifold to construct examples of closed,
simply connected Riemannian manifolds of positive Ricci curvature with an isometric torus action of
cohomogeneity 3 in any dimension, showing that the maximal symmetry rank for a closed, simply
connected Riemannian manifold of positive Ricci curvature is at least (n − 3) in all dimensions at
least 4.

To show that the maximal symmetry rank is given by (n−2) we can now additionally lift an isometric
torus action on a given manifold to the twisted suspension, provided this action has fixed points; see
Theorem 4.1 below. We obtain the following result.

Theorem B. Let n ≥ 4 and k ∈ N0 and assume that k is even when n = 4. Then there exists
a closed simply connected n-dimensional spin manifold M with b2(M) = k that admits a
Riemannian metric of positive Ricci curvature that is invariant under an effective action of
a torus of dimension (n − 2), and if n ≥ 5 and k ≥ 1 there also exists a non-spin manifold with
these properties. In particular, any closed, 2-connected manifold that admits a torus action
of cohomogeneity 2 admits a Riemannian metric of positive Ricci curvature that is invariant
under this action.

We note that the manifolds we construct in the proof of Theorem B are, without any assumptions on
symmetries, already known to admit Riemannian metrics of positive Ricci curvature; see Remark 4.3
below. However, to the best of our knowledge, Theorem B provides the first examples in all dimensions
n ≥ 7 of closed, simply connected Riemannian n-manifolds of positive Ricci curvature with an isometric
torus action of rank (n − 2).
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Positive Ricci Curvature on Twisted Suspensions | 14117

We now consider further applications of Theorem A. An immediate consequence is the following. By
results of Bérard-Bergery [4], metrics of positive Ricci curvature can be lifted along principal S1-bundles
with non-trivial real Euler class (cf. Corollary 2.3 below), see also the work by Gilkey–Park–Tuschmann
[19]. It is open, however, if an analogous result holds if the base merely decomposes into a connected
sum where each individual summand admits a Riemannian metric of positive Ricci curvature (and we
assume that the base has finite fundamental group). It is also open whether connected sums of the
total space with other manifolds of positive Ricci curvature are possible. We can now use Theorem A to
cover the following special cases.

Corollary C.

(1) Let M4m be a 4m-dimensional closed manifold with m ≥ 2 that admits a Riemannian metric of
positive Ricci curvature and let e ∈ H2(M;Z). For � ∈ N let P → M#�(±CP2m) be the principal S1-
bundle whose Euler class restricted to M is e and a generator on each ±CP2m-summand. Then P
admits a Riemannian metric of positive Ricci curvature.

(2) Let Mn be a closed, simply connected manifold of dimension n ≥ 5 that admits a Riemannian
metric of positive Ricci curvature and let P → M be a principal S1-bundle with primitive Euler
class (or, equivalently, P is simply connected). Let N be the product S2 × Sn−1 if M is non-spin and
the non-trivial linear Sn−1-bundle over S2 if M is spin. Then, for any � ∈ N0, the manifold P#�N
admits a Riemannian metric of positive Ricci curvature.

To prove Corollary C we will show that P is diffeomorphic to �eM#�−1(S2 × S4m−1) in (1) and that �eM
is diffeomorphic to P#N in (2). We note that in (1) the metric constructed on P is not invariant under the
(free) S1-action.

Next we focus on dimension 6. A large class of examples of closed, simply connected 6-manifolds
with a Riemannian metric of positive Ricci curvature was constructed in [36, 37] and a list of all known
examples is given in [37, Section 5.1]. However, none of these examples has torsion in its homology.
We can now use Theorem A in combination with the work of Boyer–Galicki [5–7] and Kollár [24, 25] on
positive Sasakian structures in dimension 5 to construct examples where infinitely many finite groups
can be realized as the torsion group of the second homology.

Theorem D.

(1) For every k ∈ N that is not a multiple of 30 there exists a closed, simply connected rational
homology 6-sphere �6 with H2(�;Z) ∼= H3(�;Z) ∼= Z/k ⊕ Z/k and H4(�;Z) = 0 such that for any
� ∈ N0 the manifold

�#�(S2 × S4)

admits a Riemannian metric of positive Ricci curvature.
(2) For any k ∈ N there exists a closed, simply connected 6-manifold Mk, which we can assume

to be either spin or non-spin, with Tors(H2(Mk;Z)) ∼= Z/k ⊕ Z/k such that for any � ∈ N0 the
manifold

Mk#�(S2 × S4)

admits a Riemannian metric of positive Ricci curvature.

When considering non-simply connected rational homology spheres, lens spaces provide examples
of rational homology spheres with cyclic fundamental group in odd dimensions. By taking twisted
suspensions of lens spaces, we can construct such examples in even dimensions as well. More generally,
we can take twisted suspensions of spherical space forms such as the Poincaré homology sphere. In the
latter case, we even obtain an integral homology sphere.
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14118 | P. Reiser

Theorem E.

(1) For any integer k and any even dimension n ≥ 4 there exists a rational homology sphere Mn
k with

π1(Mk) ∼= Z/k and Hi(Mk;Z) = 0 for all 2 ≤ i ≤ n − 1 such that for any � ∈ N0 the manifold

Mk#�(S2 × Sn−2)

admits a Riemannian metric of positive Ricci curvature.
(2) For any n ≥ 4 there exists a homology n-sphere �n whose fundamental group is the binary

icosahedral group such that for any � ∈ N0 the manifold

�#�(S2 × Sn−2)

admits a Riemannian metric of positive Ricci curvature.

As final application we construct examples of odd-dimensional simply connected manifolds of
positive Ricci curvature with prescribed third homology group. We note that it was shown in [12] that
any 2-connected 7-manifold admits a Riemannian metric of positive Ricci curvature and in particular
any finitely generated abelian group appears as the third homology group of such a manifold. By taking
products or twisted suspensions one can extend this result to higher dimensions and to homology
groups of higher degrees as well. Here we give an alternative construction with a rather simple rational
cohomology ring.

Theorem F. Let

G ∼= Z
/

k1Z ⊕ · · · ⊕ Z
/

k�1Z
⊕ Z�2

be an arbitrary finitely generated abelian group and set � = �1 + �2. Then, for any m ≥ 3, there
exists a closed, simply connected manifold M2m+1

G of positive Ricci curvature with the rational
cohomology ring of #�(S2 × S2m−1)#�2 (S

3 × S2m−2) and such that H3(MG) ∼= G.

For homology groups of smaller degree, any finite group is a subgroup of SU(n) for some n and
can therefore be realized as the fundamental group of a closed manifold of positive Ricci curvature.
Alternatively, if one only considers the first homology group, appropriate products of lens spaces can
produce any given finite abelian group as fundamental group. Note that, by the theorem of Bonnet–
Myers, infinite fundamental groups cannot occur. If we fix the dimension, there are also restrictions
for finite groups, see [10]. For the second homology, to the best of our knowledge, the corresponding
problem is open.

This article is laid out as follows. In Section 2 we recall basic facts on principal S1-bundles and
introduce the twisted suspension. In Section 3 we construct metrics of positive Ricci curvature on
twisted suspensions to prove Theorem A. Finally, in Section 4 we consider applications and prove
Theorems B–F. In Appendix A we recall basic facts on cohomogeneity-two torus actions and prove a
proposition we need in the proof of Theorem B.

2 Preliminaries
2.1 Principal S1-bundles
In this section we review basic facts on the topology and the geometry of principal S1-bundles. See, for
example, [3] and [26] for further details. All manifolds, bundles and maps between manifolds are, unless
stated otherwise, considered in the smooth category.

Recall that for a manifold M isomorphism classes of principal S1-bundles P
π−→ M over M are in

bijection with the second integral cohomology group H2(M;Z), a bijection is given by the Euler class
e(π) ∈ H2(M;Z).
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Positive Ricci Curvature on Twisted Suspensions | 14119

Now given a principal S1-bundle P
π−→ M we define the vertical distribution V ⊆ TP by V = ker(dπ),

that is, V is the line bundle tangent to each fibre. A canonical section of V is given by the action field ∂t

defined by ∂t = d
dt |t=0x · eit for each x ∈ P.

A connection form is a differential 1-form A on P such that A(∂t) = 1 and A is invariant under the
S1-action. From a connection form A we obtain the horizontal distribution H ⊆ TP via H = ker(A).

The curvature form F associated to a connection form A is the 2-form F = dA. Since F is invariant
under the S1-action and trivial on V , it is the pull-back of a form on M, which we will also denote by F .

Proposition 2.1 ([3, Satz 3.23]). The cohomology class of − 1
2π

F in H2
dR(M) equals the image of e(π)

in H2(M;R). Moreover, for every representative ω of this class there exists a connection form A
whose curvature form satisfies − 1

2π
F = ω.

Given a Riemannian metric ǧ on M, a connection form A and a smooth function φ : M → R, we define
the following S1-invariant metric g on P:

g = π∗ǧ + e2φA2. (2.1)

By construction π : (P, g) → (M, ǧ) is a Riemannian submersion with horizontal distribution given by H.
We will be interested in the Ricci curvatures of this metric.

Lemma 2.2 ([19, Lemma 1.3]). Let P
π−→ M be a principal S1-bundle and let g be the metric on P

defined in (2.1). Then, for horizontal vectors X, Y ∈ H, the Ricci curvatures of the metric g are
given as follows, where we set T = e−φ∂t.

Ric(T, T) = �φ − ‖dφ‖2 + e2φ

4
‖F‖2,

Ric(T, X) = eφ

2
(−δF(X) + 3F(X, ∇φ)) ,

Ric(X, Y) = Ricǧ(X, Y) − e2φ

2

∑
i

F(X, ei)F(Y, ei) − Hessφ(X, Y) − X(φ)Y(φ).

Here (ei) is a horizontal orthonormal basis and we identified X and Y with their images under π∗. We
use the convention �φ = −tr(Hessφ).

Corollary 2.3. In the situation of Lemma 2.2 suppose that φ is constant. Then the Ricci curvatures
of g are given as follows:

Ric(T, T) = e2φ

4
‖F‖2,

Ric(T, X) = − eφ

2
δF(X),

Ric(X, Y) = Ricǧ(X, Y) − e2φ

2

∑
i

F(X, ei)F(Y, ei).

Corollary 2.3 shows that, by choosing A so that F is harmonic, the metric g has non-negative Ricci
curvature for φ sufficiently small, provided ǧ has positive Ricci curvature and M is compact. To obtain
strictly positive Ricci curvature one can use the fact that if P has finite fundamental group, the form F
does not vanish identically, showing that there is a point where all Ricci curvature of g are positive. The
deformation results of [14] allow then to deform the metric to have positive Ricci curvature everywhere.
This is basically the approach taken in [4]. Alternatively, instead of perturbing the metric, one can
perturb the function φ as in [19] to obtain strictly positive Ricci curvature. The latter approach has
the advantage that the resulting metric is again of the form (2.1).
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2.2 Twisted suspensions
In this section we consider the twisted suspension as introduced in [16], which generalizes the
suspension operation introduced by Duan [13] and is based on the spinning operation for knots due
to Artin [1].

For a connected manifold Mn and a class e ∈ H2(M;Z) we consider the unique principal S1-bundle
P

π−→ M with Euler class e. Let Dn ↪→ M be an embedding, which we assume to be orientation preserving
if M is orientable, and let ϕπ : Dn × S1 ↪→ P be a local trivialization covering this embedding.

Definition 2.4. The suspension of M twisted by e, denoted �eM, is defined by

�eM = P \ ϕπ (Dn × S1)◦ ∪idSn−1×S1 (Sn−1 × D2).

For e = 0 the twisted suspension �0M is the suspension introduced by Duan [13]. Note that in
[16] also the twisted suspension �̃eM, which is obtained by gluing along a non-trivial diffeomor-
phism in Definition 2.4, is introduced. We will not consider this suspension operation in this article
and refer to Remark 2.8 below, where we discuss in which cases the two suspension operations
coincide.

Some topological properties of the space �eM are given as follows:

Lemma 2.5 ([16, Lemma 5.2]). Let Mn be a connected manifold with n ≥ 2 and let e ∈ H2(M;Z).
Then the fundamental group and (co-)homology of �eM are given as follows:

(1) π1(�eM) ∼= π1(M) if n > 2 and π1(�eM) ∼= π1(M \ D2) if n = 2;
(2) H2(�eM) ∼= H2(M) if M is simply connected and similarly for homology, where we can choose

coefficients in any commutative ring, and �eM is spin if and only if w2(M) ≡ e mod 2; and
(3) the inclusion P \ ϕπ (Dn × S1)◦ ↪→ �eM induces isomorphisms in (co-)homology in all degrees

3 ≤ i ≤ n with coefficients in any commutative ring.

For e = 0 we can give a more explicit description of the (co-)homology groups using Lemma 2.5:

Hi(�0M) ∼=

⎧⎪⎪⎨⎪⎪⎩
Hi(M) ⊕ Hi−1(M), i �= 0, 1, n, n + 1

Hi(M), i = 0, 1,

Hi−1(M), i = n, n + 1,

(2.2)

(with coefficients in any commutative ring) and similarly for cohomology, cf. also [13, Proposition 3.9]. In
particular, if M is a (rational) homology sphere, the twisted suspension �0M is also a (rational) homology
sphere.

An alternative description of the space �eM can be given in terms of plumbing. We refer to [12], [37],
and the references given therein for an introduction to plumbing. As in [36] we use the convention
that the result of plumbing according to a non-connected graph is the boundary connected sum of the
manifolds resulting from plumbing according to each connected component.

Denote by π : P → M the disc bundle corresponding to π and by Dn
S2 the trivial bundle S2 × Dn → S2.

Then the space �eM is the boundary of the manifold obtained by plumbing according to the following
graph:

Using this description we can prove the following lemma. Recall that for manifolds Mn
1, Mn

2 with n ≥ 4
we have a natural isomorphism H2(M1#M2) ∼= H2(M1) ⊕ H2(M2).
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Lemma 2.6. Let Mn
1, . . . , Mn

� be connected manifolds with n ≥ 4 and let ei ∈ H2(Mi;Z) for all i =
1, . . . , �. Let e = (e1, . . . , e�) ∈ H2(M1# . . . #M�;Z). Then

�e(M1# . . . #M�) ∼= �e1 M1# . . . #�e�
M�.

Proof. Let Pi
πi−→ Mi, resp. P

π−→ M1# . . . #M�, be the principal S1-bundle with Euler class ei, resp. e. Then
the boundary connected sum of the bundles π1, . . . , π� is isomorphic to the bundle π since both bundles
have Euler class e. Hence, P is the boundary of the manifold obtained by plumbing as follows, see [36,
Proposition 3.4].

Hence, the manifold �e(M1# . . . #M�) is the result of the following graph.graph.

By [36, Proposition 3.2] we can split this graph into the disjoint union of the graphs

The resulting manifold is therefore the connected sum of the manifolds �ei Mi. �

We can repeat the surgery operation in the definition of the twisted suspension by performing
multiple surgeries on fibre spheres. The resulting manifold can again be expressed using the twisted
suspension.

Lemma 2.7. Let Mn be a connected manifold, let e ∈ H2(M;Z) and let P
π−→ M be the principal S1-

bundle with Euler class e. Let ϕ1, . . . , ϕ� : Dn × S1 ↪→ P be local trivializations as in Definition 2.4
with pairwise disjoint image. Then the space

P′ =
(

P \
⋃

i

ϕi(D
n × S1)◦

)
∪id�i (S

n−1×S1 )

(⊔
i

(Sn−1 × D2)

)

is diffeomorphic to the connected sum

P′ ∼= �eM#�−1(S2 × Sn−1).

Proof. The space P′ is the result of plumbing according to the following graph.
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14122 | P. Reiser

By [36, Proposition 3.2] we can remove all except one edge of this graph without changing the
diffeomorphism type. In particular, P′ is diffeomorphic to the connected sum of �eM and (� − 1) copies
of S2 × Sn−1. �

Remark 2.8. In [16] another suspension operation, denoted �̃e, is introduced, which is obtained by
replacing the identity map on Sn−1×S1 in Definition 2.4 by a map α̃ : Sn−1×S1 → Sn−1×S1 defined
by α̃(x, y) = (αyx, y), where α : S1 → SO(n) represents a generator of π1(SO(n)). In general, the
operations �e and �̃e do not coincide. For example, if M is a simply connected non-spin manifold
and e ∈ H2(M;Z) satisfies e ≡ w2(M) mod 2, then �eM is spin, while �̃eM is non-spin; see
[16, Lemma 5.2].

However, if the universal cover of the total space P of the principal S1-bundle P
π−→ M is non-spin,

then the spaces �eM and �̃eM are in fact diffeomorphic. Indeed, in this case, by [16, Proposition
3.6], any two embeddings S1 × Dn ↪→ P that induce the same map on fundamental groups are
isotopic. In particular, the embeddings ϕπ and ϕπ ◦ α̃ are isotopic, which shows that the spaces
�eM and �̃eM are diffeomorphic.

To characterize when the universal cover P̃ of P is non-spin, consider the pull-back of P
π−→ M along

the universal cover M̃
πM−→ M of M and denote the resulting space by P̂. Then P̂ → M̃ is a principal

S1-bundle with Euler class π∗
Me and P̂ → P is a covering. If P̂ → M̃ is the trivial bundle, then the

universal cover is given by R × M̃, which is spin if and only if M̃ is spin. If P̂ → M̃ is non-trivial,
denote by d ∈ N the divisibility of π∗

Me ∈ H2(M̃;Z) (and note that this group is torsion-free since
M̃ is simply connected). Then the total space P̃ of the principal S1-bundle over M̃ with Euler
class 1

d π∗e is simply connected (see, e.g., [16, Lemma 2.3]) and covers P̂ and is therefore the
universal cover of P̂ and P. By [16, Corollary 2.6], P̃ is non-spin if and only if M̃ is non-spin and
1
d π∗

Me �≡ w2(M̃) mod 2.
If one restricts to the suspension operations �0 and �̃0, then it was shown in [13] that for a

manifold Mn the spaces �0M and �̃0M are diffeomorphic whenever M is �-stable, that is,
whenever the map Diff(M, x0) → GL(n), which assigns to a diffeomorphism of M fixing x0 ∈ M
its differential on Tx0 M, induces a surjective map on fundamental groups. Examples of �-stable
manifolds include spheres (see [13, Proposition 3.2]) and products M1 × M2 where at least one
factor is �-stable (see [13, Corollary 3.1]).

3 Positive Ricci Curvature on Twisted Suspensions
To prove Theorem A we will show the following more general result.

Theorem 3.1. Let Mn be a closed manifold of dimension n ≥ 3 that admits a Riemannian metric
of positive Ricci curvature and let e ∈ H2(M;Z). Let P

π−→ M be the principal S1-bundle with Euler
class e and let ϕ1, . . . , ϕ� : Dn ×S1 ↪→ P be local trivializations covering embeddings Dn ↪→ M with
pairwise disjoint image. Then the space

P′ =
(

P \
⋃

i

ϕi(D
n × S1)◦

)
∪id�i (S

n−1×S1 )

(⊔
i

(Sn−1 × D2)

)
(3.1)

admits a Riemannian metric of positive Ricci curvature.

Using Lemma 2.7 we obtain the following corollary, which implies Theorem A for � = 1.

Corollary 3.2. Let Mn be a closed manifold of dimension n ≥ 3 that admits a Riemannian metric of
positive Ricci curvature and let e ∈ H2(M;Z). Then for any � ∈ N the manifold �eM#�−1(S2 ×Sn−1)

admits a Riemannian metric of positive Ricci curvature.

To prove Theorem 3.1 we view Sn−1 × D2 as the space obtained from [0, sλ] × Sn−1 × S1 for some sλ > 0
(which will be specified later) by collapsing each circle {0} × {v} × S1, where v ∈ Sn−1. On the product
[0, sλ] × Sn−1 × S1, which we view as a principal S1-bundle, we then define a connection metric which we
can glue to a connection metric on P \ ⋃

i ϕi(Dn × S1)◦. We will now describe the metrics on each part.
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3.1 The metric on P \ ⋃
i ϕi(Dn × S1)◦

Let x1, . . . , x� ∈ M be pairwise distinct points. We can now deform the metric of positive Ricci curvature
on M into a metric of positive Ricci curvature that has constant sectional curvature 1 in a neighbourhood
of each point xi; see, for example, [46], [38, Corollary 4.4] and Lemma 4.2 below. We denote this metric
by ǧ. Thus, we have isometric embeddings ϕ̌1, . . . , ϕ̌� : Dn ↪→ M, where on Dn we consider the induced
metric of a geodesic ball of some radius ε > 0 in the round sphere of radius 1. By the disc theorem of
Palais [33] we can assume that these embeddings are the original embeddings Dn ↪→ M and we obtain
local trivializations ϕ1, . . . , ϕ� covering these embeddings.

By the Hodge Theorem (see, e.g., [26, Theorem 4.16]), there exists a unique harmonic 2-form ω on M
that represents the class e. By Proposition 2.1 there exists a connection form A on P with curvature form
F = −2πω. In particular, F is harmonic, so δF = 0. For a constant φ > 0 let gφ be the metric (2.1). It
follows from Corollary 2.3 that gφ has non-negative Ricci curvature for φ sufficiently small.

3.2 The metric on [0, sλ] × Sn−1 × S1

On [0, sλ] × Sn−1 × S1 we define a doubly warped submersion metric as follows. Let sλ > 0 and let
f , h : [0, sλ] → [0, ∞) be smooth functions so that f is strictly positive and h only vanishes at s = 0.
On [0, sλ] × Sn−1 we then define the metric

ǧf = ds2 + f (s)2ds2
n−1.

On the principal S1-bundle [0, sλ] × Sn−1 × S1 we choose an arbitrary connection form A that is given by
A = dt in a neighbourhood of s = 0. We then define the metric (2.1) given by

gf ,h = ǧf + e2φA2,

where φ = ln(h). Since A = dt in a neighbourhood of s = 0, the metric gf ,h is a doubly warped product
metric in this neighbourhood. By [35, Proposition 1.4.7] we obtain a smooth metric on the quotient
Sn−1 × D2 if and only if f is even at s = 0 and h is odd at s = 0 with h′(0) = 1.

We will use the following warping functions.

Lemma 3.3. For every λ ∈ (0, 1) there exists sλ > 0 and smooth functions f , h : [0, sλ] → [0, ∞)

satisfying the differential inequalities

− (n − 1)
f ′′

f
− h′′

h
> 0, (3.2)

− f ′′

f
+ (n − 2)

1 − f ′2

f2
− f ′h′

fh
> 0, (3.3)

− h′′

h
− (n − 1)

f ′h′

fh
> 0, (3.4)

f > 0, h|(0,sλ] > 0, (3.5)

and the boundary conditions

(1) f is even at s = 0 and h is odd at s = 0 with h′(0) = 1;

(2) there exist N > 0, s′ ∈ R such that f (s) = N sin
(

s−s′
N

)
in a neighbourhood of s = sλ and f ′(sλ) =

λ; and
(3) all derivatives of h vanish at s = sλ.

Note that the boundary conditions in particular imply that f ′(0) = h(0) = 0.

Proof. The construction in [40] already provides functions f and h that satisfy all required conditions,
except that (3.2) and (3.3) merely hold as non-strict inequalities. Since it will be crucial that these hold
strictly in our case, we modify this construction as follows.
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Let λ0 ∈ (λ, 1) and choose α ∈ (n−2, n−2
λ2

0
). Now define f : [0, ∞) → (0, ∞) as the unique smooth function

satisfying

f (0) = 1,

f ′(0) = 0,

f ′′ = αλ2
0

2
f−α−1.

From the definition it follows that f ′′ > 0, and since f ′(0) = 0, the derivative f ′ is positive and monotone
increasing on (0, ∞). In particular, f (s) converges to ∞ as s → ∞.

By integrating both sides of the equation f ′′f ′ = αλ2
0

2 f−α−1f ′ we obtain

f ′2 = λ2
0

(
1 − f−α

)
.

Hence, since f (s) → ∞ as s → ∞, it follows that f ′ converges to λ0 > λ. In particular, there exists sλ > 0
with f ′(sλ) = λ.

Next, we define h : [0, ∞) → [0, ∞) by

h = 2
αλ2

0

f ′.

We then have

h′ = f−α−1,

h′′ = −(α + 1)f−α−2f ′.

One can show now inductively that f is an even function and h is an odd function at s = 0. In particular,
the required boundary conditions at s = 0 and inequalities (3.5) are all satisfied. For the inequalities
(3.2)–(3.4) we calculate

f ′′

f
= αλ2

0

2
f−α−2,

h′′

h
= −α(α + 1)

2
λ2

0f−α−2,

1 − f ′2

f2
= 1 − λ2

0 + λ2
0f−α

f2
,

f ′h′

fh
= αλ2

0

2
f−α−2.

From this it follows immediately that inequalities (3.2) and (3.4) are satisfied. For (3.3) we use that f ≥ 1
and (n − 2) < α < n−2

λ2
0

as follows:

− f ′′

f
+ (n − 2)

1 − f ′2

f2
− f ′h′

fh
= f−2 (

(−αλ2
0 + (n − 2)λ2

0)f
−α + (n − 2)(1 − λ2

0)
)

≥ f−2 (−αλ2
0 + (n − 2)

)
> 0.

It remains to modify f and h near s = sλ to satisfy the required boundary conditions. Note that we

have already achieved f ′(sλ) = λ. Now let N > 0 and s′ ∈ R so that the function s �→ N sin
(

s−s′
N

)
extends f
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as a C1-function at s = sλ. Note that, since (3.2)–(3.4) depend linearly on the second derivative of f , these
inequalities are satisfied at s = sλ for the function

s �→ μf (s) + (1 − μ)N sin
(

s − s′

N

)
.

for all μ ∈ [0, 1], and therefore also in a small neighbourhood of s = sλ. Thus, by using a suitable cut-off
function, we can modify f in a small neighbourhood of s = sλ so that (2) is satisfied and (3.2)–(3.4) still
hold on [0, sλ]; see [2, Theorem 1.2], cf. also [46].

Finally, we modify h near s = sλ to satisfy (3). For that, let ε > 0 and let ψ : R → R be a smooth function
that is constant 1 on (−∞, sλ −ε] and constant 0 on [sλ, ∞) with ψ ′ ≤ 0 and ψ > 0 on (−∞, sλ]. We replace
h on [sλ − ε, sλ] by the function h̃ defined by

h̃(sλ − ε) = h(sλ − ε),

h̃′ = ψ · h′.

Then we have h̃′′ = h′′ψ + h′ψ ′ ≤ h′′ψ , so

− h̃′′

h̃′ ≥ − h′′

h′ ,

which implies that (3.4) holds. Moreover, since h̃′′ ≤ 0 and h̃′ ∈ [0, h′(sλ − ε)], while h̃(sλ) → h(sλ) as ε → 0
and f ′′ < 0 in a small neighbourhood of s = sλ, also (3.2) and (3.3) hold on [sλ − ε, sλ] for ε sufficiently
small. �

For the metric on [0, sλ]×Sn−1 ×S1 the functions f and h will be warping functions for the spheres Sn−1

and S1, respectively. It will be important to scale down the size of the S1-factor, that is, to scale down
the function h. While inequalities (3.2)–(3.4) are invariant under scaling of h, the boundary condition
h′(0) = 1 is not. This, however, can be adjusted easily.

Lemma 3.4. Let λ ∈ (0, 1) and let sλ, f and h as in Proposition 3.3. Then for any r ∈ (0, 1) and any
ε > 0 we can modify the functions f and r · h on [0, ε] so that on [ε′, sλ] for some ε′ ∈ (0, ε) they
satisfy the conclusions of Proposition 3.3 (and we consider the boundary conditions at s = ε′

instead of s = 0).

Proof. Since f ′(0) = 0, we can slightly perturb the function f to be constant in a neighbourhood of s = 0.
For given s0 ∈ (0, ε) in this neighbourhood we then replace h on [ε′, s0] with the function

s �→ R
r

sin
(

s − ε′

R

)
,

where R and ε′ are chosen so that h is C1 at s = s0. It is easily verified that all required properties are
satisfied. Finally, we smooth h in a small neighbourhood of s = s0 while keeping inequalities (3.2)–(3.4)
satisfied; cf. [37, Corollary 3.2]. �

Proposition 3.5. For given λ, r ∈ (0, 1) let f , hr be the functions obtained in Lemma 3.4, where ε is
chosen so that A = dt on [0, ε]. Then for all r sufficiently small the metric gf ,hr has positive Ricci
curvature.

Proof. Let X, Y be local unit vector fields on Sn−1. We extend X and Y constantly in s-direction to obtain
local vector fields on [0, sλ] × Sn−1. Using the Koszul formula one obtains the following expressions for
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the Levi–Civita connection ∇ ǧf of ǧf :

∇ ǧf

∂s
∂s = 0,

∇ ǧf

∂s
X = ∇ ǧf

X ∂s = f ′

f
X,

∇ ǧf

X Y = −ff ′〈X, Y〉Sn−1 ∂s + ∇Sn−1

X Y.

We then obtain from Lemma 2.2 the following expressions for the Ricci curvatures of gf ,h:

Ric(T, T) = − h′′
r

hr
− (n − 1)

f ′h′
r

fhr
+ h2

r

4
‖F‖2

ǧf
,

Ric
(
X/f , Y/f

) =
(−f ′′

f
+ (n − 2)

1 − f ′2

f2
− f ′h′

r

fhr

)
〈X, Y〉Sn−1

− h2
r

2f4

∑
i

F(X, ei)F(Y, ei),

Ric(∂s, ∂s) = − h′′
r

hr
− (n − 1)

f ′′

f
− h2

r

2f2

∑
i

F(∂s, ei)
2,

Ric
(
T, X/f

) = hr

2

(
−δǧf

F(X) + 3
h′

r

hr
F(X, ∂s)

)
,

Ric(T, ∂s) = − hr

2
δǧf

F(∂s),

Ric(X/f , ∂s) = − h2
r

2f3

∑
i

F(X, ei)F(∂s, ei).

Here (ei) is an orthonormal basis with respect to ds2
n−1.

Since the functions f , hr satisfy inequalities (3.2)–(3.4), and since hr = r·h on [ε, sλ], the Ricci curvatures
Ric(T, T), Ric(X/f , X/f ) and Ric(∂s, ∂s) are strictly positive for r sufficiently small and converge to a positive
function as r → 0. The absolute values of the mixed Ricci curvatures Ric(T, X/f ), Ric(T, ∂s) and Ric(X/f , ∂s)

can be bounded above by any positive constant by possibly choosing r smaller. It follows that gf ,hr has
positive Ricci curvature for r sufficiently small. �

3.3 Gluing and deforming
We have now defined metrics of non-negative Ricci curvature on both parts of the gluing (3.1). To finish
the proof of Theorem 3.1 it remains to glue these metrics together to obtain a metric of non-negative
Ricci curvature on P′ and to deform it into a metric of positive Ricci curvature.

By construction, the metric ǧ considered in Subsection 3.1 is of the form ds2 + sin2
(s)ds2

n−1 near each
xi where s denotes the distance from xi. Let s0 > 0 such that for all xi the metric has this form on the ball
of radius s0. We set λ = cos(s0) and consider � copies of the metric ǧf on [0, sλ] × Sn−1 with f as obtained
in Lemma 3.3. By using a partition of unity we define for each i a connection form Ai on the i-th copy
of [0, sλ] × Sn−1 × S1 that smoothly extends the connection form given on P \ ⋃

i ϕi(Dn × S1)◦ according to
the gluing (3.1) and is given by dt in a neighbourhood of s = 0.

For r ∈ (0, 1) we now consider the metric gf ,hr with connection form Ai and with hr as obtained in

Lemma 3.4 and f modified accordingly. Since f (s) = N sin
(

s−s′
N

)
in a neighbourhood of s = sλ and f ′(sλ) =

λ, the metric ǧf ,hr glues smoothly with the metric gφ after rescaling by 1
N for suitable values of r and φ.

By possibly choosing r and φ smaller, we obtain a smooth metric of non-negative Ricci curvature on P′

by Proposition 3.5.
Finally, since the metric gf ,hr has strictly positive Ricci curvature by Proposition 3.5, it follows from

the deformation results of Ehrlich [14] that this metric can be deformed into a metric of positive Ricci
curvature. This concludes the proof of Theorem 3.1.
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4 Applications
4.1 Isometric torus actions
In this section we will prove the following result, which can be seen as an equivariant version of
Theorem A and Corollary 3.2.

Theorem 4.1. Let (Mn, g), n ≥ 3, be a closed Riemannian manifold of positive Ricci curvature that
admits an effective isometric action of a torus Tk. Suppose that this action has at least � fixed
points and let e ∈ H2(M;Z). Then the manifold

�eM#�−1(S2 × Sn−1)

admits a Riemannian metric of positive Ricci curvature and an effective isometric Tk+1-action.

Note that Theorem 4.1 in particular applies to the trivial action of the trivial group, resulting in a
Riemannian metric of positive Ricci curvature which is invariant under a circle action.

To prove Theorem 4.1, we need to deform the metric equivariantly around fixed points into a metric
of constant sectional curvature 1.

Lemma 4.2. Let (Mn, g) be a Riemannian manifold of positive Ricci curvature and suppose that G
is a Lie group that acts isometrically on (M, g). Let p ∈ M be a fixed point of this action. Then
there exists a metric g′ of positive Ricci curvature on M with the following properties:

(1) There exists ε > 0 so that on Dε(p) ⊆ M, which we identify with Dε(0) ⊆ TpM via exp, the action
is linear and the metric g′ coincides with the induced metric of a geodesic ball of radius ε in the
sphere of radius 1;

(2) the metric g′ coincides with g outside an arbitrarily small neighbourhood of p; and
(3) the metric g′ is invariant under the action of G.

Proof. We consider the induced linear action of G on the tangent space TpM via the differential. Since
the action of G on M is isometric, the action of G on TpM preserves the inner product gp. Hence, if we
equip D π

2
(0) ⊆ TpM, that is, the ball of radius π

2 with respect to gp, with the Riemannian metric ds2
n, that

is, round metric of radius 1, the metric ds2
n is invariant under the action of G.

Now let ε > 0 so that the exponential map exp : TpM → M is a diffeomorphism on Dε(0) and consider
the metric

gε =
(
exp |−1

Dε (0)

)∗
ds2

n

on Dε(p) ⊆ M. Since the exponential map is equivariant with respect to the G-action, the metric gε is
G-invariant. Furthermore, since gε and g induce the same normal coordinate system around p, their
1-jets coincide at p. Hence, by [46, Theorem 1.10], there exists a cutoff function ψ : [0, ∞) → [0, 1] with
ψ |[0,ε′] ≡ 1 for some ε′ ∈ (0, ε) and ψ |[ε,∞) ≡ 0, such that the metric

g′ = ψ(dp)gε + (1 − ψ(dp))g

has positive Ricci curvature, where dp : M → R denotes the distance function to p. Since dp is invariant
under the G-action, the metric g′ is invariant under the G-action as well and, by definition, coincides
with gε in a neighbourhood of p and with g outside Dε(p). �

Proof of Theorem 4.1. We first apply Lemma 4.2 to � distinct fixed points, so we obtain isometric
embeddings ϕ̌1, . . . , ϕ̌� : Dn ↪→ M, where on Dn we consider the induced metric of a geodesic ball of some
radius ε > 0 in the round sphere of radius 1, and the action on each of these discs is linear. As in the
proof of Theorem 3.1, we denote by ϕ1, . . . , ϕ� : Dn ×S1 ↪→ P local trivializations covering the embeddings
ϕ̌1, . . . , ϕ̌�.
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The action on each local trivialization Dn × S1 is now of the form

h(x, y) �→ (h · x, φ(h)y),

where h ∈ Tk, (x, y) ∈ Dn × S1, h · x denotes the action of Tk on M, and φ : Dn → S1 is a smooth map. We
can modify φ to be constant 1 in a neighbourhood of 0 ∈ Dn. By restricting the local trivializations ϕi to
sufficiently small discs, we can then assume that the resulting action is trivial on the S1-factor in each
local trivialization.

Now let P → M be the principal S1-bundle with Euler class e. Since M is closed and admits a
Riemannian metric of positive Ricci curvature, its fundamental group is finite. Hence, by [42, Proposition
6.2], see also [21], we can lift the Tk-action on M to P so that it commutes with the free S1-action on P,
hence we obtain a Tk+1-action on P.

Next, as shown in [19,p. 459], there exists a connection form on P with harmonic curvature form
representing −2πe ∈ H2

dR(M) as in Proposition 2.1 which is Tk-invariant. Hence, the metric gφ for any
φ > 0 is Tk+1-invariant.

We now proceed along the same lines as in the proof of Theorem 3.1. Since the action of Tk+1 on each
boundary component of P \ ⋃

i ϕi(Dm × S1)◦, which we identify with Sn−1 × S1 via ϕi, is linear on each
factor and constant in orthogonal direction to the boundary, the doubly warped submersion metric
ǧf ,h constructed in the proof of Theorem 3.1 is invariant under the action as long as we choose the
connection form A on [0, sλ] × Sn−1 × S1 to be invariant.

Finally, the deformation at the end of the proof of Theorem 3.1, which ensures that the resulting
metric has strictly positive Ricci curvature, can be chosen to preserve the isometry group as explained
in [14,p. 20]. �

Proof of Theorem B. We start by considering the action of S1 on S3 ⊂ C2 given by λ(z1, z2) = (λz1, z2).
Since the action is linear, it preserves the round metric on S3. Its fixed point set is given by {0} × S1, in
particular, we have an infinite number of fixed points. By Theorem 4.1, it follows that the manifold

�0S3#�(S2 × S2) ∼= #�(S2 × S2)

admits a Riemannian metric of positive Ricci curvature that is invariant under an effective T2-action
for any � ∈ N0. This proves Theorem B for n = 4 and k even.

For the remaining cases first note that the T2-action on #�(S2 × S2) has precisely 2� + 2 fixed points.
This follows, for example, from the fact that the fixed point set has the same Euler characteristic as
the manifold itself; see [23]. It can also seen directly from the construction, where the fixed point set
on each attached S2 × D2 is given by {x0, x1} × {0}, where x0, x1 are the two fixed points of the rotational
action of S1 on S2.

It then follows from Theorem 4.1, that the manifold

Me,�′ = (�e#�(S2 × S2))#�′ (S2 × S3)

for any e ∈ H2(#�(S2 × S2);Z) and �′ ∈ N0 admits a Riemannian metric of positive Ricci curvature that is
invariant under a T3-action. Further, by Lemma 2.5, the manifold Me,�′ is spin if and only if e has even
divisibility and Me,�′ has second Betti number given by 2� + �′. In particular, we can realize any number
k ≥ 0 as the second Betti number of a spin manifold and any number k ≥ 2 as the second Betti number
of a non-spin manifold (since for � = 0 the class e ∈ H2(S4;Z) vanishes). Finally, for k = 1, by [34], see also
[18], we can construct a non-spin manifold with a T3-action as a biquotient, and by [39] it also admits
an invariant Riemannian metric of positive Ricci curvature.

Now suppose n > 5 and k ∈ N0. Let B5 be a manifold constructed above with b2(B) = k + n − 5 such
that B is spin if and only if k = 0. Consider a principal Tn−5-bundle P

π−→ B with simply connected total
space. This can be achieved by choosing an Euler class e(π) ∈ H2(B;Z)n−5 that can be extended to a basis
of H2(B;Z) ∼= Zk+n−5, and in this case we have

b2(P) = b2(B) − (n − 5) = k;
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see, for example, [16, Lemma 2.3]. Further, by [16, Corollary 2.6], the manifold P is spin if and only if
w2(B) ∈ H2(B;Z/2) is contained in the subspace generated by e(π) mod 2. Thus, by choosing a suitable
Euler class, we can realize P as either a spin or non-spin manifold whenever k > 0.

By [19, Theorem 0.1], the manifold P admits a Riemannian metric of positive Ricci curvature that is
invariant under the free Tn−5-action. Further, as explained in [19,p. 459], the T3-action on B constructed
above can be lifted to P such that it commutes with the Tn−5-action and the Riemannian metric can be
chosen to be invariant under this action. Thus, we obtain an isometric Tn−2-action on the n-dimensional
manifold P.

Finally, assume that Mn is a closed, 2-connected manifold with an effective action of Tn−2. By
Proposition A.1, after applying a torus automorphism, M is equivariantly diffeomorphic to the manifold
constructed above with k = 0, thus admitting an invariant Riemannian metric of positive Ricci
curvature. �

Remark 4.3. The manifolds constructed in the proof of Theorem B are total spaces of principal
torus bundles P → Me,�′ over the manifolds Me,�′ . It follows from [16, Theorems B and C] that
each total space P is diffeomorphic to a connected sum of products of spheres and possibly a
non-trivial linear sphere bundle over S2 (in case P is non-spin). The existence of Riemannian
metrics of positive Ricci curvature (without any assumption on symmetries) on manifolds of
this form has already been established in [9] in combination with [37, Theorem C].

4.2 Connected sums and principal S1-bundles
In this subsection we prove Corollary C, which is an immediate consequence of Corollary 3.2 together
with the results of [16].

Proof of Corollary C. For (1) let M4m be a closed manifold that admits a Riemannian metric of positive
Ricci curvature, let e ∈ H2(M;Z) and let P → M#�(±CP2m) be the principal S1-bundle with Euler class
e + ∑�

i=1 xi, where xi ∈ H2(CP2m;Z) is a generator of the cohomology ring of the i-th ±CP2m-summand.
By [16, Theorem A], we can decompose P as follows:

P ∼= �eM#�x1 (±CP2m)# . . . #�x�−1 (±CP2m)#P0,

where P0 → CP2m is the principal S1-bundle with Euler class x�.
By [16, Theorem B], each twisted suspension �xi (±CP2m) is diffeomorphic to S2 × S4m−1 and, since

x� ∈ H2(CP2m) is a generator, we have P0 ∼= S4m+1. Hence, P is diffeomorphic to

P ∼= �eM#�−1(S2 × S4m−1)

and the claim now follows from Corollary 3.2.
For (2) let Mn be a closed, simply connected manifold that admits a Riemannian metric of positive

Ricci curvature and let P → M be a principal S1-bundle with primitive Euler class e. Then, by [16, Theorem
B], we have

�eM ∼= P#N.

Hence, by Corollary 3.2, the manifold

(P#N)#�−1(S2 × Sn−1)

admits a Riemannian metric of positive Ricci curvature. The claim now follows from the fact that the
manifold N#�−1(S2 × Sn−1) is diffeomorphic to #�N; see, for example, [16, Corollary 4.2]. �

Remark 4.4. Note that, in order to apply the results of [16, Theorem B], we do not need that M is
simply connected in (2) of Corollary C. Indeed, we only need to require that the fibre inclusion
S1 ↪→ P is null-homotopic, or, equivalently, that the pull-back of the Euler class to the universal
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cover of M is primitive. In this case we define N as S2 × Sn−1, whenever the universal cover of
M is non-spin and as the unique non-trivial linear Sn−1-bundle over S2 otherwise.

4.3 Simply connected 6-manifolds
In this subsection we prove Theorem D. The manifolds � and Mk in Theorem D will be constructed as
twisted suspensions of corresponding 5-manifolds. Recall from Smale’s classification of closed, simply
connected spin 5–manifolds [41] that for each k ∈ N there exists a unique closed, simply connected spin
5-manifold Nk with H2(Nk) ∼= Z/k ⊕ Z/k.

Theorem 4.5 ([7, Corollary 10.2.20 and Table B.4.2], see also [24, 25]). The following manifolds
admit a positive Sasakian structure and therefore a Riemannian metric of positive Ricci
curvature:

(1) The manifold Nk whenever k is not a multiple of 30.
(2) The manifold Nk#7(S2 × S3) for all k ∈ N.

Proof of Theorem D. For (1) we define � = �0Nk whenever k is not a multiple of 30. By Theorem 4.5 and
Corollary 3.2 the manifold �#�(S2 × S4) then admits a Riemannian metric of positive Ricci curvature for
all � ∈ N0.

By Lemma 2.6, the manifold � is simply connected. Further, it follows from Poincaré duality and
the universal coefficient theorem that H3(Nk;Z) and H4(Nk;Z) are trivial. Hence, by (2.2), the homology
groups of � are given by H2(�;Z) ∼= H3(�;Z) ∼= H2(Nk;Z) ∼= Z/k ⊕ Z/k and H4(�;Z) ∼= H3(Nk;Z) ⊕
H4(Nk;Z) = 0.

For (2) we define Mk = �e(Nk#7(S2 × S3)) for some

e ∈ H2(Nk#7(S2 × S3);Z) ∼=
⊕

7

H2(S2 × S3;Z).

As before we obtain from Theorem 4.5 and Corollary 3.2 that for any � ∈ N0 the manifold Mk#�(S2 × S4)

admits a Riemannian metric of positive Ricci curvature and by Lemma 2.5 we have that Mk is simply
connected with

H2(Mk;Z) ⊕ H2(Nk#7(S2 × S3);Z) ∼= Z /kZ ⊕ Z /kZ ⊕ Z7.

Further, by Lemma 2.5, the manifold Mk is spin if and only if e has even divisibility, so that we can
construct a spin manifold by choosing e = 0 and a non-spin manifold by choosing e to be primitive. �

Remark 4.6. We can give further information on the topology of � = �0Nk and Mk = �e(Nk#7(S2 ×
S3)). First note that it follows from Lemma 2.6 that

Mk = �e(Nk#7(S2 × S3)) ∼= �0Nk#�e1 (S
2 × S3)# . . . #�e7 (S

2 × S3),

where ei ∈ H2(S2 × S3;Z) denotes the restriction of e to the i-th summand. Further, by [16,
Theorem B], each �ei (S

2 × S3) is diffeomorphic to either (S2 × S4)#(S3 × S3) or (S2 ×̃ S4)#(S3 × S3),
where S2 ×̃ S4 denotes the total space of the unique non-trivial S4-bundle over S2, depending
on whether ei has even or odd divisibility.

It remains to investigate the topological properties of �0Nk. Since H4(Nk;Z) is trivial and Nk is spin,
the characteristic classes w2(Nk) and p1(Nk) are trivial. Hence, by Lemma 2.5, also the classes
w2(�0Nk) and p1(�0Nk) vanish.

Further, for any coefficient ring, the product of any two classes in H2(�0Nk) vanishes. This can be
seen by considering the space M′ = (S2 ×̃ S3)#Nk, where S2 ×̃ S3 denotes the total space of the
unique non-trivial linear S3-bundle over S2. If x∗ ∈ H2(S2 ×̃ S3;Z) ∼= Z denotes a generator, then
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the principal S1-bundle with Euler class x∗ over M′ is diffeomorphic to (S3 × S3)#�0Nk by
[16, Theorem A]. By the Gysin sequence, the bundle projection induces a surjective map

H2(M′) → H2((S3 × S3)#�0Nk) ∼= H2(�0Nk).

Since H4(M′) is trivial, any product of elements of H2(M′) vanishes, and therefore the same holds
for H2(�0Nk).

Finally, we note that closed, simply connected spin 6-manifolds were classified by Zhubr [45]. A
consequence of this classification is that the diffeomorphism type of such a manifold M is
uniquely determined by the second homology group H2(M;Z), the cohomology ring H∗(M;Z/n)

for all n ∈ N ∪ {∞} (which can be identified with a class μ(M) ∈ H6(K(H2(M), 2);Z)), the third
Betti number b3(M) and a certain class p(M) ∈ H4(M;Z) ∼= H2(M;Z) with 4p(M) = p1(M), up to
automorphisms of H2(M;Z). In our case, we have from the above that μ(�0Nk), b3(�0Nk) and
p1(�0Nk) all vanish. We also have that p(�0Nk) vanishes, which can be seen as follows:

Let Wk be the manifold obtained by plumbing as follows:

As seen in Section 2, we have ∂Wk = �0Nk. Moreover, since Wk is homotopy equivalent to Nk∨S2,
we have an isomorphism

H2(Wk;Z) ∼= H2(Nk;Z) ⊕ H2(S2;Z).

Since the inclusion Nk \ D5 ↪→ Nk induces an isomorphism on H2, the inclusion �0Nk ↪→ Wk

induces the map x �→ (x, 0) on H2 according to this splitting. Hence, the class [(�0Nk, idZ/k⊕Z/k)]
is trivial in the bordism group �

Spin
6 (K(Z/k⊕Z/k, 2)). As shown in [45,3.13], there is a homomor-

phism

P : �
Spin
6 (K(Z/k ⊕ Z/k, 2)) → Z/k ⊕ Z/k

with p(M) = P([(M, idZ/k⊕Z/k)]) for all M with H2(M;Z) ∼= Z/k ⊕ Z/k, and therefore we have
p(�0Nk) = 0. Hence, the diffeomorphism type of �0Nk is uniquely determined by the invariants
H2(�0Nk;Z) ∼= Z/k ⊕ Z/k, μ(�0Nk) = 0, b3(�0Nk) = 0 and p(�0Nk) = 0.

Remark 4.7. The manifolds in Theorem 4.5 are the only known examples of closed, simply
connected rational homology 5-spheres with a Riemannian metric of positive Ricci curvature,
with the exception of the manifolds #�N2 for all � ∈ N, a finite number of sporadic examples
(see [7, Corollary 10.2.20]), and the Wu manifold W5. The latter is the homogeneous space
SU(3)/SO(3) and it follows from classical results of Nash [29] that this space admits a Rieman-
nian metric of positive Ricci curvature. The Wu manifold W5 is non-spin with H2(W;Z) ∼= Z/2.
We can apply a similar construction as in the proof of Theorem D to these manifolds, which
provide further examples of rational homology 6-spheres with a Riemannian metric of positive
Ricci curvature.

Remark 4.8. We can iterate the construction in the proof of Theorem D by taking iterated twisted
suspensions of Nk in Theorem 4.5. In this way we obtain infinite families of rational homology
spheres with a Riemannian metric of positive Ricci curvature in any dimension n > 5.

4.4 Non-simply connected rational homology spheres
In this subsection we prove Theorem E.
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Proof of Theorem E. For (1) let Lk be a (n − 1)-dimensional lens space with π1(Lk) ∼= Z/k. Recall that the
cohomology of Lk is given as follows:

Hi(Lk;Z) ∼=

⎧⎪⎪⎨⎪⎪⎩
Z, i = 0, n − 1,

Z /kZ , 2 ≤ i ≤ n − 2 and i even,

0, else.

Further, the cup product H2(Lk,Z)⊗ H2i(Lk;Z) → H2i+2(Lk;Z) for 1 ≤ i ≤ n−4
2 is given by the multiplication

in the group Z/k.
Let e ∈ H2(Lk;Z) be a generator and define Mk = �eLk. Then, by Lemma 2.5, we have π1(Mk) ∼= π1(Lk) ∼=

Z/k. Further, it follows from the Gysin sequence and Lemma 2.5 that Mk has trivial cohomology groups
in degrees 3 ≤ i ≤ n−2 and Hn−1(Mk;Z) ∼= Z/k. By Poincaré duality and the universal coefficient theorem,
it follows that Mk has vanishing homology groups in degrees 2 ≤ i ≤ n − 1.

Finally, by Corollary 3.2, for any � ∈ N0 the manifold

Mk#�(S2 × Sn−2)

admits a Riemannian metric of positive Ricci curvature.
For (2) let �3 be the Poincaré homology sphere and define Sn = �0 . . . �0�

3 as the (n − 3)-fold twisted
suspension of �3. Since �3 is a homology sphere, also Sn is a homology sphere by (2.2) and we have
π1(Sn) ∼= π1(�

3) by Lemma 2.5. Finally, since �3 is a spherical space form, it follows from Corollary 3.2
that for any � ∈ N0 the manifold

Sn#�(S2 × Sn−2)

admits a Riemannian metric of positive Ricci curvature. �

Remark 4.9. More generally, since any orientable spherical space form SG = Sn/G is a rational
homology sphere, the twisted suspension �eSG is a rational homology sphere and we have
π1(�eSG) ∼= π1(SG) ∼= G by Lemma 2.5. The universal cover of this space can be described as
follows:

Let P → SG be the principal S1-bundle with Euler class e ∈ H2(SG;Z). If we pull back this bundle
along the covering Sn → SG, we obtain a principal S1-bundle over Sn, which is trivial as
H2(Sn;Z) = 0. For an embedding Dn ↪→ SG we then have |G| preimages in Sn of this embedding.
Hence, the space �eSG is covered by the space obtained from Sn ×S1 by performing |G| surgeries
along local trivializations. By Lemma 2.7 this space is diffeomorphic to

�0Sn#|G|−1(S2 × Sn−1).

Since �0Sn ∼= Sn+1, cf. [16, Example 5.3], we obtain that the universal cover of �eSG is given by

�̃eSG ∼= #|G|−1(S2 × Sn−1).

4.5 Manifolds with prescribed third homology
In this subsection we prove Theorem F. The manifold MG will be constructed as the connected sum of
twisted suspensions of CPm.

Lemma 4.10. Let e ∈ H2(CPm;Z) and denote by k ∈ N0 the divisibility of e. If k �= 0, then the
cohomology of �eCPm is given as follows:

Hi(�eCPm;Z) ∼=

⎧⎪⎪⎨⎪⎪⎩
Z, i = 0, 2, 2m − 1, 2m + 1,

Z /kZ , 4 ≤ i ≤ 2m − 2, and i even,

0, else.
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Proof. Let P → CPm \ D2m be the principal S1-bundle with Euler class e. It then follows from the Gysin
sequence that the cohomology of P is given by

Hi(P;Z) ∼=

⎧⎪⎪⎨⎪⎪⎩
Z, i = 0, 2m − 1,

Z /kZ , 2 ≤ i ≤ 2m − 2, and i even,

0, else.

This can alternatively also be seen from the fact that CPm \ D2m is homotopy equivalent to CPm−1 and
therefore P is homotopy equivalent to a lens space of dimension (2m − 1) with fundamental group Z/k.
The claim now follows from Lemma 2.5. �

Proof of Theorem F. Recall that the group G is given by

G ∼= Z
/

k1Z ⊕ · · · ⊕ Z
/

k�1Z
⊕ Z�2 .

Let ei ∈ H2(CPm;Z) be a class of divisibility ki. We define

MG = �e1CPm# . . . #�e�1
CPm#�2 �0(S2 × S2m−2).

By [16, Theorem B] we have

�0(S2 × S2m−2) ∼= (S2 × S2m−1)#(S3 × S2m−2).

Hence, by Lemma 4.10 we have

Hi(MG;Z) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z, i = 0, 2m + 1,

Z�, i = 2, 2m − 1,

Z�2 , i = 3,

G, i = 2m − 2,

Z
/

k1Z ⊕ · · · ⊕ Z
/

k�1Z
, 4 ≤ i ≤ 2m − 4, and i even,

0, else.

In particular, by Poincaré duality, we have H3(MG;Z) ∼= G and MG has the rational cohomology ring of
#�(S2 × S2m−1)#�2 (S

3 × S2m−2).
Finally, by Lemma 2.6, we have that MG is a twisted suspension of the manifold

#�1CPm#�2 (S
2 × S2m−2).

By [8, Theorem C] and [37, Theorem C] each summand admits a core metric as defined in [8] and by
[8, Theorem B] the connected sum of manifolds with core metrics admits a Riemannian metric of
positive Ricci curvature. Hence, by Theorem A, the manifold MG admits a Riemannian metric of positive
Ricci curvature. �
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Appendix A. Cohomogeneity-Two Torus Actions
In this section we recall basic facts on cohomogeneity-two torus actions on closed, simply connected
manifolds and determine the second Betti number from the orbit space data. For basic facts on torus
actions of cohomogeneity 2 we refer to [17], [22], [30], [31], [32] and the references therein. For a closed,
simply connected manifold Mn, n ≥ 4, with an effective action of Tn−2 we will use the following facts:

(1) The only possible isotropy groups are the trivial group, T1 and T2.
(2) The orbit space is an m-gon, where m denotes the number of orbits with T2-isotropy. The action

over the interior is free, has T1-isotropy over the interior of each edge and T2-isotropy over each
vertex.

(3) Let ai ∈ Zn−2 denote a primitive vector generating the T1-isotropy over the i-th edge. Then each pair
(ai, ai+1) and (am, a1) can be extended to a basis of Zn−2 and all vectors a1, . . . , am together generate
Zn−2.

(4) Every labelling of vectors on an m-gon satisfying the properties of the previous item is induced by
an effective action of Tn−2 on some closed, simply connected n-dimensional manifold. Two such
manifolds are equivariantly diffeomorphic if and only if there is a diffeomorphism between their
orbit spaces that preserves the labellings (up to sign).

Proposition A.1. Let Mn be a closed, simply connected manifold that admits an effective action of
a torus Tn−2. Let m denote the number of orbits with isotropy T2. Then the second Betti number
of M is given by

b2(M) = m − n + 2.

In particular, m ≥ n−2 and if m = n−2, then there is precisely one equivariant diffeomorphism
type of such manifolds, up to automorphisms of Tn−2.

Proof. Let A ∈ Z(n−2)×m denote the matrix

A = (a1 | · · · | am).

We extend A to a unimodular matrix as follows. Since a1, . . . , am generate Zn−2, it follows from the
elementary divisor theorem that there exist unimodular matrices S ∈ Z(n−2)×(n−2), T ∈ Zm×m such that

S−1 · A · T =
(
idn−2 0

)
.

Let S′ ∈ Zm×m be defined by

S′ =
(

S 0
0 idm−n+2

)
.

Then the unimodular matrix

A′ = S′ · T−1 ∈ Zm×m
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is of the form

A′ =
(

A
∗

)
.

We denote the i-th column of A′ by a′
i and consider the m-gon with labelling a′

i on the i-th edge. Let M′

denote the closed, simply connected (m + 2)-dimensional manifold with an action of Tm inducing this
orbit space labelling.

Since each pair (ai, ai+1) and (am, a1) can be extended to a basis of Zn−2, each triple (a′
i, a′

i+1, ej) and
(a′

m, a′
1, ej) with j > n − 2, where (e1, . . . , em) denotes the standard basis of Zm, can be extended to a basis

of Zm. This implies that the circle subgroups generated by each ej with j > n − 2 intersect each isotropy
subgroup of M′ trivially. Hence, the subtorus {0} × Tm−n+2 of Tm acts freely on M′ with quotient M. It
follows that

b2(M′) = b2(M) − m + n − 2;

see, for example, [16, Lemma 2.3].
Furthermore, we have b2(M′) = 0, since otherwise, again by [16, Lemma 2.3], we can consider a

principal S1-bundle over M′ with simply connected total space P′. By lifting the action from M′ to P′,
see [21, Proposition 6.2], we obtain an effective action of Tm+1 on P′ with a free sub-action of a circle.
Since the action is free, dividing out this action does not change the number of vertices in the orbit
space. Thus, the orbit space of P′ is an m-gon labelled by m-elements of Zm+1 that generate Zm+1, which
is a contradiction.

Finally, if m = n − 2, then (a1, . . . , am) is a basis of Zm, so for any other choice of labelling (b1, . . . , bm)

there exists an automorphism of Tm carrying one into the other. �
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