SUPPORTING INFORMATION FOR

Synthesis, characterization, and *in vivo* evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2'- bipyridine rhenium tricarbonyl complexes.

Sara Nasiri Sovari^a, Isabelle Kolly^a, Kevin Schindler^a, Ana Djuric^b, Tatjana Srdic-Rajic^b, Aurelien Crochet^a, Aleksandar Pavic^{c*}, Fabio Zobi^{a*}

^aDepartment of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.

^bDepartment of experimental oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Beograd, Republic of Serbia

^cInstitute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.

*To whom all the correspondence should be addressed.

Phone (+41) 26 300 87 85, Fax (+41) 26 300 97 37, E-mail : fabio.zobi@unifr.ch

Table of contents

Crystallographic details of complexes. - page 2

¹H-NMR spectra – Figures S0-S9 – page 3-8

¹³C-NMR spectra – Figures S10-S18 – page 9-13

IR spectra - Figures S19-S23 - page 14-15

UV-Vis spectra – Figures S24-S28 – page 16-17

	2	3	5	6	7	9	10
	C II	СИ	C II	СИ	C II	D-C II	C II
	$C_{14}H_9$ BrClN.O.P.	$C_{14}\Pi_{10}$ BrN.O.Pa	$C_{14}\Pi_8$ BrE.N.O.P.	$C_{14}H_9$ $B_{r_1}N_1O_2P_9$	$C_{14}\Pi_9$ BrClN.O.P.	$ReC_{14}H_{10}$	$C_{14}\Pi_8$ BrE.N.O.P.
Formula	BICIN ₂ O ₃ Ke	DIN204Re	DIF2IN2O3RC	D121N2O3Re	DICIN3O3Ke	D11N2O3	DIF2N2O3Ke
$M_{ m W}$	554.79	536.35	556.33	599.25	554.79	520.35	556.33
T[K]	200	200	200	200	200	200	200
	monoclinic	triclinic	orthorombic	monoclinic	monoclinic	monoclinic	monoclinic
Lattice							
Space	C2/c	P -1	Pca21	P21/c	P21/c	Pc	P21/c
group							
Ζ	8	2	4	4	4	4	4
	12.8442(3)	7.7857(3)	14.1812(2)	10.9912(4)	10.9380(6)	14.9333(5)	14.7874(5)
a [Å]							
	11.1458(3)	8.4162(3)	7.8891(1)	12.2942(4)	12.1342(11)	11.3306(2)	11.5066(2)
b [Å]							
_	21.9911(5)	11.3670(4)	13.6693(2)	12.4352(5)	12.3961(7)	9.2074(3)	8.8657(3)
c [Å]							
α [°]	90	92.440(3)	90	90	90	90	90
	92.621(2)	95.136(3)	90	97.928(3)	97.486(5)	106.894(2)	92.420(3)
β [°]							
γ [°]	90	92.303(3)	90	90	90	90	90
	3144.93(13)	740.45(5)	1529.28(4)	1664.28(11)	1631.2(2)	1490.69(8)	1507.18(8)
V[Å ³]							
$d_{ m calcd}$	2.343	2.406	2.416	2.392	2.259	2.319	2.452
$[g/cm^3]$							
	0.0443,	0.0199,	0.0147,	0.0648,	0.0829,	0.0418,	0.0241,
R_1, wR_2	0.1169	0.0480	0.0387	0.1665	0.2252	0.1204	0.0624

 Table 1. Crystallographic details of complexes.

Figure S0a. 400 MHz ¹H-NMR of L₅ in CDCl₃.

Figure S0a. 400 MHz ¹H-NMR of L₁₀ in CDCl₃.

Figure S1. 400 MHz ¹H-NMR of 2 (in acetonitrile-d3, *= solvent residual peak).

Figure S2. 400 MHz ¹H-NMR of **3** (in DMSO, *****= solvent residual peak).

Figure S3. 400 MHz ¹H-NMR of 4 (in acetonitrile-d3, *= solvent residual peak).

Figure S4. 400 MHz ¹H-NMR of 5 (in DMSO, *****= solvent residual peak).

Figure S5. 400 MHz ¹H-NMR of **6** (in DMSO, *****= solvent residual peak).

Figure S6. 400 MHz ¹H-NMR of 7 (in DMSO, *= solvent residual peak).

Figure S7. 400 MHz ¹H-NMR of 8 (in DMSO, *= solvent residual peak).

Figure S8. 400 MHz ¹H-NMR of 9 (in DMSO, *= solvent residual peak)

Figure S9. 400 MHz ¹H-NMR of 10 (in DMSO, *****= solvent residual peak).

¹³C-NMR spectra

Figure S10. 126 MHz ¹³C-NMR of 2 (in acetonitrile-d3, *= solvent residual peak).

Figure S11. 126 MHz ¹³C-NMR of 3 (in DMSO, *= solvent residual peak).

Figure S12. 126 MHz ¹³C-NMR of 4 (in acetonitrile-d3, *= solvent residual peak).

Figure S13. 126 MHz ¹³C-NMR of 5 (in DMSO, *= solvent residual peak).

Figure S14. 126 MHz ¹³C-NMR of 6 (in DMSO, *= solvent residual peak).

Figure S15. 126 MHz ¹³C-NMR of 7 (in DMSO, *****= solvent residual peak).

Figure S16. 126 MHz ¹³C-NMR of 8 (in DMSO, *= solvent residual peak).

Figure S17. 126 MHz ¹³C-NMR of 9 (in DMSO, *****= solvent residual peak).

Figure S18. 126 MHz ¹³C-NMR of 10 (in DMSO, *****= solvent residual peak).

IR spectra

100 BRUKER

8

Br

ĊO F-

3000

2500

2000 cm-1

1500

1000

OC, |Re```

OC'

3500

Transmittance [%] 40 60

20

Figure S19. IR spectra of 2 (left) and 3.

Figure S20. IR spectra of 4 (left) and 5.

Figure S21. IR spectra of 6 (left) and 7.

Figure S22. IR spectra of 8 (left) and 9.

Figure S23. IR spectrum of 10.

UV-Vis spectra

Figure S24. UV-Vis spectrum of 2 (left) and 3 in Acetonitrile.

Figure S25. UV-Vis spectrum of 4 (left) and 5 in Acetonitrile.

Figure S26. UV-Vis spectrum of 6 (left) and 7 in Acetonitrile.

Figure S27. UV-Vis spectrum of 8 (left) and 9 in Acetonitrile.

Figure S28. UV-Vis spectrum of 10 in Acetonitrile.