SUPPORTING INFORMATION FOR

Efficient Direct Nitrosylation of α -Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release

Sara Nasiri Sovari ^{1,+}, Isabelle Kolly ^{1,+}, Kevin Schindler ¹, Youri Cortat ¹, Shing-Chi Liu ¹, Aurelien Crochet ¹, Aleksandar Pavic ² and Fabio Zobi ^{1,*}

- ¹ Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland;
- sara.nasirisovari@unifr.ch (S.N.S.); isabelle.kolly@unifr.ch (I.K.);
 - kevin.schindler@unifr.ch (K.S.);
 - youri.cortat@unifr.ch (Y.C.); shing-chi.liu@unifr.ch (S.-C.L.); aurelien.crochet@unifr.ch (A.C.)
- ² Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a,
- 11042 Belgrade, Serbia; sasapavic@imgge.bg.ac.rs* Correspondence: fabio.zobi@unifr.ch
- ⁺ These authors contributed equally to this paper

Table of contents

¹H-NMR spectra of complexes 1-14 – Figures S1-S12 – page 2-7

IR spectra of complexes 1-14 – Figures S13-S24 – page 8-13

UV-Vis spectra of complexes 1-14 - Figures S25-S36 - page 14-15

Emission spectra of selected nitrosyl Re complexes – Figures S37 – page 16

Table S1 Crystal data and structure refinement for complexes - page 17

NMR spectra

Figure S1. 400 MHz ¹H-NMR of [Re(CO)₂(NO)(bpy)Br](BF₄) (1) (in Acetonitrile, ***** = solvent residual peak).

Figure S2. 400 MHz ¹H NMR spectrum of the [Re(CO)₂(NO)(phen)Br](BF₄) (**2**) (in DMSO-d₆, * = solvent residual peak).

Figure S3. 400 MHz ¹H NMR spectrum of the $[Re(CO)_2(NO)(Et_2N-bpy)Br](BF_4)$ (**3**) (in Acetonitrile, ***** = solvent residual peak).

Figure S4. 400 MHz ¹H NMR spectrum of $[Re(CO)_2NO(tBu-bpy)Br](BF_4)$ (4) (in Acetonitrile, * = solvent residual peak).

Figure S5. 400 MHz ¹H NMR spectrum of [Re(CO)₂NO(ϕ -phen)Br](BF₄) (**5**) (in Acetobitrile, ***** = solvent residual peak).

Figure S6. 400 MHz ¹H NMR spectrum of [[Re(CO)₂(NO)(Et₂N-bpy)F](BF₄) (7) (in Acetonitrile, * = solvent residual peak).

Figure S7. 400 MHz ¹H-NMR of [Re(CO)₃(bpy)(O₂CBz)] (10) (in Acetonitrile).

Figure S8. 400 MHz ¹H-NMR of [Re(CO)₃(bpy)(O₂CPh)] (11) (in Acetonitrile).

Figure S9. 400 MHz ¹H NMR spectrum of [Re(CO)₂NO(bpy)BF₄](BF₄) **(12)** (in Acetonitrile).

Figure S10. 400 MHz ¹H-NMR of [Re(CO)₂NO(6-Me-bpy)Br](BF₄) (**14**) (in Acetonitrile, ***** = solvent residual peak).

Figure S11. 400 MHz ¹H NMR spectrum of [Re(CO)₂NO(bpy)(Me2N-py)](BF₄)₂ (9) (in Acetonitrile).

Figure S12. Comparison of the ¹H NMR spectra (400 MHz) of (top to bottom) *N*,*N*-dimethylpyridin-4-amine (Me2N-py), *fac*-[Re(CO)₃(bpy)(Me2N-py)](CF₃SO₃) (**B**) and [Re(CO)₂NO(bpy)(Me2N-py)](BF₄)₂ (**9**) (in Acetonitrile).

Figure S13. IR spectrum of [Re(CO)₂(NO)(bpy)Br](BF₄) (1).

Figure S14. IR spectrum of [Re(CO)₂NO(phen)Br](BF₄) (2).

Figure S15. IR spectrum of [Re(CO)₂NO(Et₂N-bpy)Br](BF₄) (3).

Figure S16. IR spectrum of [Re(CO)₂NO(tBu-bpy)Br](BF₄) (4).

Figure S17. IR spectrum of $[Re(CO)_2NO(\phi-phen)Br](BF_4)$ (5).

Figure S18. IR spectrum of [Re(CO)₂NO(bpy)F](BF₄) (6).

Figure S19. IR spectrum of [Re(CO)₂NO(Et₂N-bpy)F](BF₄) (7).

Figure S20. IR spectrum of [Re(CO)₂NO(bpy)(Me2N-py)](BF₄)₂ (9).

Figure S21. IR spectrum of [Re(CO)₃(bpy)(O₂CBz)] (10).

Figure S22. IR spectrum of [Re(CO)₃(bpy)(O₂CPh)] (11).

Figure S23. IR spectrum of [Re(CO)₂NO(bpy)BF₄](BF₄) (12).

Figure S24. IR spectrum of [Re(CO)₂NO(6-Me-bpy)Br](BF₄) (14).

UV-Vis spectra

FigureS25.UV-Visspectrumof[Re(CO)2NO(bpy)Br](BF4) (1) in acetonitrile.

Figure S26. UV-Vis spectrum of [Re(CO)₂NO(phen)Br](BF₄) (2) in DMF.

Figure S27. UV-Vis spectrum of [Re(CO)₂NO(Et₂N-bpy)Br](BF₄) (3) in acetonitrile.

Figure S28. UV-Vis spectrum of [Re(CO)₂NO(tBu-bpy)Br](BF₄) (**4**) in DMF.

Figure S29. UV-Vis spectrum of $[Re(CO)_2NO(\phi-phen)Br](BF_4)$ (5) in acetonitrile.

Figure S30. UV-Vis spectrum of [Re(CO)₂NO(6-Me-bpy)Br](BF₄) (**14**) in acetonitrile.

Figure S31. UV-Vis spectrum of [Re(CO)₂(NO)(Et₂N-bpy)F](BF₄) (7) in acetonitrile.

 Figure
 S32.
 UV-Vis
 spectrum
 of

 [Re(CO)₃(bpy)(O₂CBz)]
 (10) in DMF.

Figure S33. UV-Vis spectrum of [Re(CO)₃(bpy)(O₂CPh)] (11) in DMF.

FigureS34.UV-Visspectrumof[Re(CO)_2NO(bpy)BF4](BF4)(12) in DMF.

FigureS35.UV-Visspectrumof[Re(CO)_2NO(bpy)(Me2N-py)](BF_4)_2(9)inacetonitrile.

 Figure
 S36.
 UV-Vis
 spectrum
 of

 [Re(CO)₂(NO)(bpy)F](BF₄)
 (6) in DMF.

Figure S37. Emission spectra of selected nitrosyl Re complexes. Top: λ_{ex} = 318; bottom λ_{ex} = 350.

Identification code	1	2	6	7	8	10	11	12	13	14	ox'd 14
CSD number	2093631	2093632	2094070	2093633	2093634	2093635	2093636	2093637	2093638	2093639	2093640
Empirical formula	$C_{12}H_8BBrF_4N_3O_3Re$	$C_{14}H_8BBrF_4N_3O_3Re$	$C_{12}H_8BF_5N_3O_3Re$	$C_{20}H_{26}BF_5N_5O_3Re$	$C_{34}H_{26}Br_2N_6O_4Re_2$	$C_{21}H_{14}BrN_2O_5Re$	C ₂₀ H ₁₃ N ₂ O ₅ Re	$C_{12}H_{10}B_2F_8N_3O_4Re$	$C_{14}H_{11}B_3F_{12}N_4NaO_3Re$	$C_{13}H_{10}BBrF_4N_3O_3Re$	C ₁₁ H ₁₁ N ₂ O ₄ <i>R</i> e
Formula weight	595.13	619.15	534.22	676.47	1114.83	640.45	547.52	620.05	752.89	609.16	421.42
Temperature/K	200(2)	200(2)	250(2)	200(2)	200(2)	200(2)	200(2)	250(2)	200(2)	200(2)	200(2)
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic	orthorhombic	monoclinic	triclinic	monoclinic	triclinic	triclinic	orthorhombic
Space group	<i>P</i> nma	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n	Pna21	P21/c	P-1	<i>P</i> 2 ₁ /n	<i>P</i> -1	<i>P</i> -1	Pnma
a/Å	17.0900(4)	10.6603(3)	10.0421(2)	9.26150(10)	16.1750(2)	20.1830(6)	8.4295(4)	7.4804(2)	8.6774(3)	7.0101(4)	9.5298(4)
b/Å	12.1181(2)	12.4496(3)	7.8180(2)	23.2899(3)	8.35450(10)	10.7028(2)	9.4918(4)	24.3398(7)	10.8057(4)	10.9539(4)	6.6170(3)
c/Å	8.01100(10)	13.2172(4)	20.2281(4)	12.5774(2)	25.8524(3)	9.4252(3)	12.7023(6)	11.1812(2)	13.1764(4)	11.3985(7)	18.6332(11)
α/°	90	90	90	90	90	90	106.704(3)	90	75.144(3)	84.168(3)	90
в/°	90	105.443(2)	98.0260(10)	110.6400(10)	90	97.923(2)	92.147(4)	109.070(2)	73.474(3)	77.822(5)	90
γ/°	90	90	90	90	90	90	112.452(3)	90	89.797(3)	84.140(4)	90
Volume/Å ³	1659.06(5)	1690.81(8)	1572.54(6)	2538.80(6)	3493.54(7)	2016.55(10)	887.12(7)	1924.05(9)	1141.65(7)	848.21(8)	1174.99(10)
Ζ	4	4	4	4	4	4	2	4	2	2	4
$\rho_{calc}g/cm^3$	2.383	2.432	2.256	1.770	2.120	2.110	2.050	2.141	2.190	2.385	2.382
µ/mm⁻¹	17.733	17.442	15.833	9.977	16.411	14.433	13.724	13.323	11.792	17.364	20.343
F(000)	1104.0	1152.0	1000.0	1320.0	2096.0	1216.0	524.0	1168.0	712.0	568.0	792.0
20 range for data collection/°	10.352 to 135.344	8.606 to 136.05	9.362 to 135.072	7.592 to 136.81	10.94 to 135.768	8.848 to 135.636	10.67 to 129.818	13.102 to 135.856	7.26 to 135.066	13.778 to 129.57	10.426 to 134.826
Reflections collected	20797	17444	41477	38156	34006	3542	21038	18854	36017	15094	4916
Independent reflections	1573 [<i>R</i> _{int} = 0.0336, <i>R</i> _{sigma} = 0.0124]	2947 [R _{int} = 0.0386, R _{sigma} = 0.0170]	2801 [<i>R</i> _{int} = 0.0280, <i>R</i> _{sigma} = 0.0082]	4497 [R _{int} = 0.0343, R _{sigma} = 0.0159]	4908 [R _{int} = 0.0294, R _{sigma} = 0.0127]	3542 [<i>R</i> _{int} = ?, <i>R</i> _{sigma} = 0.0151]	2904 [<i>R</i> _{int} = 0.0509, <i>R</i> _{sigma} = 0.0238]	3229 [R _{int} = 0.0529, R _{sigma} = 0.0237]	3817 [<i>R</i> _{int} = 0.0677, <i>R</i> _{sigma} = 0.0229]	2750 [R _{int} = 0.0278, R _{sigma} = 0.0129]	1082 [<i>R</i> _{int} = 0.0236, <i>R</i> _{sigma} = 0.0121]
Data/restraints/parameters	1573/0/129	2947/0/245	2801/0/226	4497/0/321	4908/1/434	3542/110/273	2904/0/253	3229/36/299	3817/0/343	2750/0/237	1082/1/108
Goodness-of-fit on F ²	1.192	1.061	1.290	1.109	1.101	1.167	1.123	1.082	1.102	1.149	1.085
Final R indexes [I>=2o (I)]	R ₁ = 0.0248, wR ₂ = 0.0700	$R_1 = 0.0260, wR_2 = 0.0738$	R ₁ = 0.0289, wR ₂ = 0.0647	$R_1 = 0.0309, wR_2 = 0.0873$	$R_1 = 0.0250, wR_2 = 0.0654$	$R_1 = 0.0686,$ w $R_2 = 0.1786$	$R_1 = 0.0312,$ w $R_2 = 0.0793$	$R_1 = 0.0439, wR_2 = 0.1020$	$R_1 = 0.0406, wR_2 = 0.1022$	$R_1 = 0.0234, wR_2 = 0.0626$	$R_1 = 0.0346$, w $R_2 = 0.1014$
Final R indexes [all data]	$R_1 = 0.0249, wR_2 = 0.0700$	$R_1 = 0.0267, wR_2 = 0.0745$	R ₁ = 0.0290, wR ₂ = 0.0647	R ₁ = 0.0334, wR ₂ = 0.0888	$R_1 = 0.0252, wR_2 = 0.0656$	$R_1 = 0.0703,$ w $R_2 = 0.1795$	$R_1 = 0.0312,$ w $R_2 = 0.0793$	R ₁ = 0.0473, wR ₂ = 0.1041	$R_1 = 0.0406, wR_2 = 0.1022$	$R_1 = 0.0234, wR_2 = 0.0626$	$R_1 = 0.0352$, w $R_2 = 0.1019$
Largest diff. peak/hole / e Å-3	0.95/-0.71	1.46/-1.02	1.25/-1.54	0.72/-1.00	0.81/-0.76	2.58/-2.83	0.72/-1.96	0.95/-0.93	2.04/-1.64	1.31/-1.55	1.55/-0.83
Flack parameter					0.429(14)						

Table S1. Crystal data and structure refinement for 1, 2, 6-8, 10-14, and fully oxidized complex 14.

Suitable crystal were selected and mounted on loop with oil on a Stoe StadiVari diffractometer. The crystal were kept at 200(2) K during data collection, excepted for **6** and **12** (250(2) K). Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimization.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.