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Summary: When estimating local average and marginal treatment effects using instrumen-
tal variables (IVs), multivalued endogenous treatments are frequently converted to binary
measures, supposedly to improve interpretability or policy relevance. Such binarisation intro-
duces a violation of the IV exclusion if (a) the IV affects the multivalued treatment within
support areas below and/or above the threshold and (b) such IV-induced changes in the mul-
tivalued treatment affect the outcome. We discuss assumptions that satisfy the IV exclusion
restriction with a binarised treatment and permit identifying the average effect of (a) the bi-
narised treatment and (b) unit-level increases in the original multivalued treatment among
specific compliers. We derive testable implications of these assumptions and propose tests
which we apply to the estimation of the returns to college graduation instrumented by college
proximity.
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1. INTRODUCTION

Instrumental variable (IV) strategies are frequently applied in empirical economics to overcome
the endogeneity of a treatment variable whose causal effect on some outcome variable is of
interest to researchers and policy makers. An instrumental variable needs to satisfy relevance and
monotonicity conditions, meaning that it monotonically shifts the treatment, as well as validity:
the IV must not be associated with treatment-outcome confounders and not directly affect the
outcome other than through the treatment, which is known as the IV exclusion restriction. For
binary treatment variables, the IV assumptions allow identifying the local average treatment effect
(LATE) on the compliers, whose treatment switches as a function of the instrument (Imbens and
Angrist, 1994), or the marginal treatment effect (MTE) (Heckman and Vytlacil, 2001; 2005).

For multivalued treatments, the instrument identifies a weighted average of effects of unit
changes in the treatment on several complier groups. Unfortunately, the size of the effects of
unit changes in the treatment are unidentified and the complier groups might be overlapping (see
Angrist and Imbens, 1995), complicating the interpretation of IV estimates. In practice, multi-
valued treatments are therefore often binarised based on a specific threshold in the support that
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Instruments and binarised treatment 537

appears interesting from a policy perspective, such as whether or not a defendant is incarcerated
(Loeffler, 2013; Aizer and Doyle, 2015; Bhuller et al., 2020), while the multivalued treatment
could be the length of the prison sentence. As another example, rather than considering years of
schooling and aiming at evaluating a weighted average effect of a one-year increase in schooling
among heterogeneous complier groups, one might prefer analyzing a binary indicator for college
education among compliers who are induced to finish college by the instrument.

Binarisation of treatments are also tempting when analyzing the MTE, i.e., the average effect
on those who are indifferent between taking and not taking a binary treatment for a specific
level of unobserved resistance to treatment, a framework which requires a binary treatment
indicator. Accordingly, studies estimating MTEs commonly make use of binarised versions of
originally multivalued treatments. For instance, Carneiro et al. (2017) evaluate the effects of upper
secondary schooling (rather than years of education) using distance to school as the instrument.
For further examples, see Carneiro et al. (2011), Cornelissen et al. (2018), and Felfe and Lalive
(2018).

It is well known that such a binarisation may introduce a violation of the IV exclusion restriction,
as demonstrated in Angrist and Imbens (1995).1 Marshall (2016) refers to this issue as coarsening
bias and discusses assumptions under which the effect of the multivalued treatment right at the
binarisation threshold is identified.

In this paper, we consider a different causal parameter under binarisation, which possibly
includes treatment effects away from the threshold and may be identified under weaker assump-
tions than those in Marshall (2016). Violation of the IV exclusion restriction for this parameter
occurs if (a) the IV affects the multivalued treatment within (rather than across) support areas
below and/or above the binarisation threshold and (b) such IV-induced changes in the multival-
ued treatment within support areas affect the outcome. In cases where the exclusion restriction
holds for the binarised treatment, the identified parameter includes the effects of any instrument-
induced shifts in the multivalued treatment among compliers whose treatment is induced to
cross the threshold by the instrument, rather than the effect at the threshold only, as in Marshall
(2016).

As a methodological contribution, we show that part (a) of the violation of the exclusion
restriction has testable implications when the original treatment variable prior to binarisation
is observed. A necessary (but not sufficient) condition for ruling out ‘off-threshold’ compli-
ance, i.e., that the IV affects the multivalued treatment within support areas below or above
the threshold, is a particular first stage condition. When binarising the treatment at alternative
values across its support, the first-stage effect of the instrument must weakly increase up to
the threshold chosen by the researcher, and weakly decrease thereafter. This can be tested in
a moment inequality framework (e.g., Andrews and Shi, 2013). Testing within cells of con-
trol variables (or even the outcome) may improve power, because violations of the first-stage
conditions in subgroups may average out in the whole sample, as we show in the empirical
example.

Furthermore, we consider two special cases of this first-stage condition, first, that all compliers
are situated at the threshold (as required by Marshall 2016) and, second, that all compliers are
situated at the minimum and maximum values of the multivalued treatment. We show that both
conditions allow identifying average effects of unit changes in the treatment for a well-defined
complier group (rather than an average of several heterogeneous complier groups) and that the

1 For a related discussion, see Imbens and Rubin (2015), who argue that the stable unit treatment valuation assumption
requires the treatment level not to be coarsened when defining potential outcomes.
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538 M. Andresen and M. Huber

conditions can be tested by means of standard F -tests. Our tests provide a set of diagnostic tools
that may guide empiricists when choosing IV specifications based on binarised treatments.2

We apply our tests to labour market data from the National Longitudinal Survey of Young
Males (NLSYM) as analyzed by Card (1995). We consider an indicator for graduating from a
four-year college as our binarised education treatment, where a dummy for proximity to college
serves as instrument. Both special cases of the identifying assumptions are soundly rejected.
Furthermore, the moment inequality tests suggest that the exclusion restriction might be violated
altogether for the binarised treatment (unless one rules out treatment effects among off-threshold
compliers).

We build on Angrist and Imbens (1995) who first describe the bias in IV estimates with
binarised treatments,3 and on the identification of the average effect of a unit increase in treatment
for compliers at the binarisation threshold provided in Marshall (2016). The latter assumes that
IV-induced changes in the multivalued treatment affect the outcome only at the threshold (but
not at off-threshold margins). In contrast, we demonstrate that the causal effect of a binarised
treatment is identified even when permitting off-threshold compliers, as long as the threshold
captures all compliers in the population. This allows for identification under weaker assumptions,
but implies that the identified parameter includes treatment effects of any off-threshold shifts
for threshold-crossing compliers that are induced to increase their treatment by more than one
level.

Our paper contributes to a growing literature on testing the assumptions for the nonparametric
identification of the LATE with binary instruments that also applies to binarised treatments. These
tests may be based on constraints on the density of compliers (Balke and Pearl, 1997; Heckman
and Vytlacil, 2005; Kitagawa, 2015; Mourifié and Wan, 2017), mean outcomes of noncompliers
(Huber and Mellace, 2015; Sharma, 2016), reduced form effects for covariate values where there
is no first stage (Slichter, 2014), or using additional instruments (Dzemski and Sarnetzki, 2014).
Mogstad et al. (2018) study model specification tests in the MTE framework that requires binary
treatments. For the multivalued treatment case the instrumental variables assumptions imply
the testable condition that the cumulative distribution functions of the treatment conditional on
the instrument must not cross across instrument states (Angrist and Imbens, 1995; Fiorini and
Stevens, 2014). We appear to be the first to propose formal tests of instrument validity in a setting
where the treatment is binarised, including tests for the assumptions in Marshall (2016). Because
the tests suggested in the literature generally test necessary, but not sufficient conditions for
instrument validity, failure to reject the null does not (even asymptotically) imply the validity of
the exclusion restriction. In the context of binarised treatments, this paper adds a further testing
approach that may (depending on the data) potentially reject instrument validity in cases where
previously suggested methods may not, and be helpful for applied researchers when evaluating
potential research designs.

This paper proceeds as follows. Section 2 introduces the econometric framework and
presents the baseline assumptions that will be maintained throughout. Section 3 discusses the
causal parameters of interest in the literature as well as our alternative parameter along with

2 Even though framed in the IV context, we note that the conditions and methods for testing off-threshold compliance
can also be applied in other contexts to verify if some variable exclusively affects specific margins of another variable.
One example might be testing whether a (randomised) labour market programme only affects the extensive or also the
intensive margin of labour supply.

3 Burgess and Labrecque (2018) also discuss violations of the exclusion restriction when binarising a multivalued
treatment in the context of Mendelian randomisation, in which genetic variants are used as instruments. We provide a
formal discussion using the potential outcomes framework.
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identifying assumptions. Section 4 presents testable implications of these assumptions and
the testing approaches. Section 5 presents an application to data from the NLSYM. Section 6
concludes.4

2. ECONOMETRIC FRAMEWORK AND BASELINE ASSUMPTIONS

We indicate with D a multivalued treatment variable that is ordered discrete, D ∈ {0, 1, ..., J },
with J + 1 being the number of possible treatment doses. An example is years of education.
Y denotes the (discrete or continuous) outcome on which the effect ought to be estimated,
for instance, earnings in the labour market later in life. Under endogeneity, unobserved factors
affect both D and Y , such that treatment effects cannot be identified from simple comparisons
of different levels of the treatment. One possible solution is the availability of an instrumental
variable (IV), denoted by Z, which is relevant in the sense that it influences D and valid in the
sense that it does not directly affect the outcome and is not associated with unobserved factors
influencing the outcome.

For the formal discussion of the identifying assumptions and testable implications, we use
the potential outcome framework (e.g., Rubin, 1974). Dz denotes the potential treatment state
that would occur if the instrument Z was exogenously set to some value z, and by Yd the
potential outcome with the treatment exogenously set to some value d in the support of D.
We will henceforth assume a binary instrument (Z ∈ {1, 0}), which simplifies the exposition,
but discuss a straightforward extension to a continuous or multivalued instrument at the end of
Section 4.

The starting point for our analysis is the standard IV assumptions for heterogeneous treatment
effect models, which will be maintained throughout the paper:

ASSUMPTION 1 (IV VALIDITY AND RELEVANCE): (a) Z⊥(D1,D0, Y0, Y1, ..., YJ ) (IV inde-
pendence), (b) Pr(D1 ≥ D0) = 1 and Pr(D1 > D0) > 0 (positive monotonicity),

where ‘⊥’ denotes independence. Assumption 1(a) implies two conditions. First, the instrument
must be random so that it is unrelated to factors affecting the treatment and/or outcome. Therefore,
not only the potential outcomes and treatment states, but also the types, which are defined by the
joint potential treatment states, are independent of the instrument. Second, Z must not have a
direct effect on Y other than through D, i.e., satisfy an exclusion restriction, which can be seen
from the fact that the potential outcomes are only defined in terms of d rather than z and d.5

The first part of Assumption 1(b) implies that the treatment of any individual does not decrease
in the instrument. The second part assumes the existence of individuals whose treatment state
positively reacts to the treatment. Both parts together imply a positive first-stage effect of the
instrument on the treatment: E(D|Z = 1) − E(D|Z = 0) > 0. We note that Assumption 1(b)
could be replaced by negative monotonicity: Pr(D1 ≤ D0) = 1 and Pr(D1 < D0) > 0. From an
econometric perspective, both versions are equivalent, because when redefining the instrument
under negative monotonicity to be 1 − Z, Assumption 1(b) is satisfied.

4 Appendix A presents a brief simulation study illustrating how conditioning on the outcome in the tests may increase
power.

5 To make these two aspects explicit, Assumption 1(a) may be postulated as two conditions, see Angrist et al. (1996):
(a) Z⊥(D1,D0, Y1,0, Y0,0, Y1,1, Y0,1, ..., Y1,J , Y0,J ) and (b) Y1,d = Y0,d = Yd for all d in the support of D (exclusion
restriction), where Yz,d denotes a potential outcome defined in terms of both the instrument z and the treatment d.
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In order to analyze the effects of a particular margin of treatment, many empiricists explicitly
or implicitly binarise the multivalued treatment. Examples include the assessment of the effects
of a binary indicator for college attendance, instrumented for instance by college proximity
(Kane and Rouse, 1993; Card, 1995; Carneiro et al., 2011), fertility measured by a dummy for
having three or more children, instrumented by same-sex sibship or twin births (Angrist and
Evans, 1998; Black et al., 2005; Mogstad and Wiswall, 2016), and dummies for incarceration,
release or disability benefit receipt in the judge leniency literature (Dobbie et al., 2018; Dahl
et al., 2014; Bhuller et al., 2020).6 Binarisation is also common in the literature on the MTE,
a parameter that can be regarded as the limit of the LATE for an infinitesimal change in the
instrument. See Carneiro et al. (2011, 2017), Cornelissen et al. (2018), and Felfe and Lalive
(2018) for examples in the context of returns to upper secondary school, college, and child care,
respectively.

Let the binarised treatment measure D∗
z = I {Dz ≥ j ∗} denote the potential state of the bi-

narised treatment under z ∈ {0, 1}, where I {a} is the indicator function that is equal to one
when a holds and zero otherwise. And j ∗ > 0 denotes a specific threshold value in the support
of D.

3. PARAMETERS OF INTEREST AND IDENTIFYING ASSUMPTIONS

If D was binary, the local average treatment effect (LATE) on the so-called compliers, which
switch treatment from 0 to 1 as a response to a switch in the instrument from 0 to 1, could be
identified by the probability limit of two-stage least squares (TSLS) or the Wald estimator (see
Imbens and Angrist, 1994). That is, under Assumption 1 and D ∈ {0, 1},

WD = E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)
= E[Y1 − Y0|D1 − D0 = 1] = �. (3.1)

For a multivalued treatment, however, the causal effect for a single complier population defined
by specific potential treatment states, e.g., for those increasing treatment from 1 to 2 when the
instrument is switched from 0 to 1, is not identified. Angrist and Imbens (1995) show for ordered
discrete treatments that it is merely possible to identify a weighted average of causal effects of
unit increases in the treatment, Yj − Yj−1, j ∈ {1, ..., J }. Specifically, the authors show in the
proof of their Theorem 1 that under Assumption 1,

E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)
=

J∑
j=1

wj · E(Yj − Yj−1|D1 ≥ j > D0) = �w, (3.2)

where the weights are given by

wj = Pr(D1 ≥ j > D0)∑J
j=1 Pr(D1 ≥ j > D0)

. (3.3)

Note that 0 ≤ wj ≤ 1 and
∑J

j=1 wj = 1. Therefore, the probability limits of TSLS or the
Wald estimator equal a weighted average of effects of unit changes in the treatment on

6 Bhuller et al. (2020) provides estimates of the effect of judge stringency on binary dummies for prison sentence
exceeding different thresholds in their appendix Figure B3. These correspond to the βj coefficients from this paper. We
provide a formal testing framework for instrument validity in this setting.
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heterogeneous complier groups defined by different margins of the potential treatments. How-
ever, the average treatment effects of unit changes for compliers, E(Yj − Yj−1|D1 ≥ j >

D0), remain themselves unidentified. Furthermore, the complier groups might be overlap-
ping. Some individuals could, for instance, satisfy both (D1 ≥ j > D0) and (D1 ≥ j + 1 >

D0) for some j and therefore be accounted multiple times, complicating the interpretation
of �w.

When practitioners analyze binarised treatments, it is not always clear what target parameter
they are aiming at, and results are often interpreted as if the treatment was truly binary. To
avoid such confusion and misinterpretation, we are explicit about the causal parameter that we
consider (and the required identifying assumptions), which corresponds to the average effect of
the (multivalued) treatment among those induced to cross the threshold j ∗ in response to the
instrument:

�∗ = E[YD1 − YD0 |D∗
1 − D∗

0 = 1] = E[YD1 − YD0 |D1 ≥ j ∗ > D0] (3.4)

=
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0,D1 ≥ j ∗ > D0] · Pr(D1 ≥ j > D0|D1 ≥ j ∗ > D0).

The expression following the second equality in (3.4) shows that �∗ is a weighted average of
effects among compliers satisfying D∗

1 − D∗
0 = 1, even though they could be defined by different

potential (original) treatment states D0,D1. That is, the effect refers to all compliers satisfying
D1 ≥ j ∗ > D0, regardless of how heterogeneous they are in terms of D1 and D0, which is
important for interpretation. Thus, the parameter �∗ contains the sum of effects of treatment for
individuals induced to cross the threshold j ∗ by the instrument. This is in contrast to �w, which
is an average effect of unit changes for all individuals affected by the instrument, not only those
crossing the threshold.

In the context of the returns to college investigated in the empirical application in Section 5, �∗

is the average causal effect on wages of the extra education obtained by individuals that have been
induced by the instrument to attend college for at least four years. Even though this parameter
generally averages over several education levels depending how many years of schooling the
individuals would have achieved with and without the instrument, it may be relevant for assessing
the average effect of policies aimed at increasing access to college, as we discuss later in this
section.

Unfortunately, �∗ is generally not identified by the probability limit of the Wald estimator or
TSLS based on D∗ rather than D under Assumption 1 alone,

WD∗ = E(Y |Z = 1) − E(Y |Z = 0)

E(D∗|Z = 1) − E(D∗|Z = 0)
, (3.5)

despite the supposed analogy of (3.5) to the results of Angrist and Imbens (1995) for a (truly)
binary treatment. This is because a binarisation of the treatment variable generally entails a
violation of the exclusion restriction, such that Assumption 1(a) for D does not carry over to D∗.
To see this, rewrite the numerator of (3.5) using the law of total probability and Assumption 1(b)
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542 M. Andresen and M. Huber

as

E(Y |Z = 1) − E(Y |Z = 0)

=
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0)

=
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0,D1 ≥ j ∗ > D0] · Pr(D1 ≥ j > D0,D1 ≥ j ∗ > D0)

+
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0, I {D1 ≥ j ∗ > D0} = 0]

· Pr(D1 ≥ j > D0, I {D1 ≥ j ∗ > D0} = 0). (3.6)

By summing over j , (3.6) simplifies to

E(Y |Z = 1) − E(Y |Z = 0)

= E[YD1 − YD0 |D1 ≥ j ∗ > D0] · Pr(D1 ≥ j ∗ > D0) (3.7)

+E[YD1 − YD0 |D1 > D0, I {D1 ≥ j ∗ > D0} = 0] · Pr(D1 > D0, I {D1 ≥ j ∗ > D0} = 0).

Note that the condition (D1 > D0, I {D1 ≥ j ∗ > D0} = 0) captures complier groups whose treat-
ment reacts to the instrument (D1 > D0), but in a way that it does not cross the threshold j ∗.
Furthermore, consider the denominator of (3.5):

E(D∗|Z = 1) − E(D∗|Z = 0)

= Pr(D ≥ j ∗|Z = 1) − Pr(D ≥ j ∗|Z = 0) = Pr(D1 ≥ j ∗) − Pr(D0 ≥ j ∗)

= Pr(D1 ≥ j ∗ > D0) + Pr(D0 ≥ j ∗) − Pr(D0 ≥ j ∗)

= Pr(D1 ≥ j ∗ > D0), (3.8)

where the second equation follows from Assumption 1(a) and the third from 1(b). Division of
(3.7) by (3.8) reveals that WD∗

does generally not identify �∗ due to the second line in (3.7). The
latter contains the effects of the instrument on compliers whose treatment is not induced to cross
j ∗ by the instrument. For this reason, the parameter of interest �∗ is only obtained in special
cases where either such off-threshold compliers do not exist or where their average treatment
effect is zero, as formalised in Assumptions 2 and 3.

ASSUMPTION 2 (ZERO AVERAGE TREATMENT EFFECT AMONG NONCAPTURED COMPLIERS):
E[YD1 − YD0 |D1 > D0, I {D1 ≥ j ∗ > D0} = 0] = 0.

ASSUMPTION 3 (FULL CAPTURING OF COMPLIERS BY THRESHOLD): Pr(D1 > D0 ≥ j ∗) =
Pr(j ∗ > D1 > D0) = 0.

Assumption 2 postulates the absence of an average causal effect for compliers not captured
by the threshold. That is, given a first stage not ‘going through’ j ∗, the average second stage for
these compliers must be zero.

Assumption 3, which can be alternatively formalised as Pr(I {D1 ≥ j ∗ > D0} = 0|D1 > D0) =
0, implies that all compliers are captured by the threshold in the sense that their treatment state
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is shifted from some D0 < j ∗ to some D1 ≥ j ∗ by the instrument. Thus, there exist no complier
groups whose treatment is affected by the instrument in a way that D0,D1 are either both below or
both above the threshold. This rules out first stages not ‘going through’ the threshold j ∗. Summing
up, the IV exclusion restriction fails with binarised treatments if (a) there exist compliers not
captured by the definition of D∗ and (b) the instrument-induced changes in treatment affects
the outcome of these subjects. In contrast, �∗ is identified under either Assumption 2 or 3 as
postulated in Proposition 1.

PROPOSITION 1 (IDENTIFICATION OF �∗ UNDER ASSUMPTION 2 OR 3): Under Assumption
1 and either Assumption 2 or 3,

E(Y |Z = 1) − E(Y |Z = 0) = E[YD1 − YD0 |D1 ≥ j ∗ > D0] · Pr(D1 ≥ j ∗ > D0), (3.9)

such that WD∗ = �∗.

Considering the expression after the first equality in (3.6) reveals that identification is also
obtained by combinations of Assumptions 2 and 3 for different subsets of compliers not captured
by D∗. For instance, Assumption 3 could hold below the threshold, securing no compliers in this
region, while Assumption 2 could hold above the threshold, securing no treatment effects among
these compliers.7

If neither Assumption 2 nor 3 holds, it follows from (3.7) that the direction of the bias in WD∗

is determined by the direction of the average treatment effect among off-threshold compliers.
Unfortunately, imposing the popular monotone treatment response (MTR) assumption of Manski
and Pepper (2000), which implies that the treatment effect has the same sign for both threshold
and off-threshold compliers, does not permit bounding the absolute size of �∗. On the contrary,
MTR implies that WD∗

overstates (understates) �∗ whenever it is positive (negative).
Applied researchers often implicitly or explicitly impose the standard LATE assumptions

directly on D∗ and proceed without discussing these issues. The above results make clear what
this implies in a setting where the treatment is binarised (or the underlying treatment could be
multivalued, even if unobserved), and two comments are in order. First, imposing the standard
LATE assumptions directly on D∗ implies imposing either Assumption 2 or Assumption 3
for all off-threshold complier groups. This should be discussed explicitly when evaluating the
plausibility of the identifying assumptions in such a setting. Second, the identified treatment effect
will include effects of nonthreshold shifts in treatment caused by the instrument, but only for
compliers also induced to cross the threshold. This complicates the interpretation when compared
to the LATE with a truly binary treatment.

Marshall (2016) discusses the problem of binarisation and proposes an alternative parameter
of interest:

�M = E[Yj∗ − Yj∗−1|D1 = j ∗,D0 = j ∗ − 1], (3.10)

which is the average effect of the shift from right below to right above the threshold for
compliers at this margin. As shown by Marshall (2016), identification of this parameter re-
quires one of the following stronger versions of the assumptions above to hold in addition to
Assumption 1:

7 A last possibility for identification is the knife-edge case where there exist off-threshold compliers with nonzero effects
of the IV-induced changes in treatment, but where these sum to 0, as pointed out by Marshall (2016) for his alternative
parameter of interest discussed further below. Formally,

∑
j0 �=j∗−1

∑J
j1=j0+1 E[Yj1 − Yj0 |D1 = j1, D0 = j0] Pr(D1 =

j1, D0 = j0) = 0. This requires treatment effects to go in opposite directions at various levels, which appears to be an
unattractive assumption from a practical perspective.
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ASSUMPTION 2∗ (ZERO AVERAGE TREATMENT EFFECT FOR OFF-THRESHOLD COMPLI-
ERS): E[Yj − Yj−1|D1 ≥ j > D0] = 0 ∀j �= j ∗.

ASSUMPTION 3∗ (CONCENTRATION OF COMPLIERS AT THRESHOLD):
∑

j �=j∗ Pr(D1 ≥ j >

D0) = 0.

Assumption 2∗ postulates that any nonthreshold shifts in the treatment induced by the in-
strument have a zero average treatment effect. This is stronger than Assumption 2, which
only requires this for those (off-threshold) compliers whose treatment does not cross the
threshold.

Assumption 3∗ postulates that compliers exclusively exist at the threshold and thus experience
a treatment shift from D0 = j ∗ − 1 to D1 = j ∗. This is considerably stronger than Assumption
3, which allows for treatment shifts at different margins of the treatment, as long as any shift is
threshold-crossing.

To see the implications of Assumptions 2∗ or 3∗, rewrite the numerator of (3.5) as

E(Y |Z = 1) − E(Y |Z = 0) =
j∗−1∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0)

+E[Yj∗ − Yj∗−1|D1 ≥ j ∗ > D0] · Pr(D1 ≥ j ∗ > D0) (3.11)

+
J∑

j=j∗+1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0).

When either Assumption 2∗ or 3∗ holds in addition to Assumption 1, (3.11) reduces to
E[Yj∗ − Yj∗−1|D1 = j ∗,D0 = j ∗ − 1] · Pr(D1 = j ∗,D0 = j ∗ − 1) and coincides with (3.9).
Furthermore, (3.8) and the denominator of (3.2) both correspond to the share of com-
pliers at the threshold, i.e., E(D|Z = 1) − E(D|Z = 0) = E(D∗|Z = 1) − E(D∗|Z = 0) =
Pr(D1 = j ∗,D0 = j ∗ − 1). Therefore, WD∗ = �M = �∗ = �w = WD . These stronger assump-
tions therefore allow identifying �w even when the multivalued treatment is not observed.

The previous results show that when working with an instrumental variable and a binarised
treatment, researchers face a classical trade-off between parameter interpretability and the strength
of the identifying assumptions. While �M may appear to be an attractive causal parameter due
to its clear interpretation as the unit-change treatment effect for threshold compliers, it requires
stronger assumptions than the weighted LATE parameter �w of Angrist and Imbens (1995).
The latter is identified under Assumption 1 only, but includes effects of any treatment shifts
induced by the instrument. Our target parameter �∗ lies between these two extremes in terms of
identifying assumptions and complier populations. It does include effects of off-threshold shifts
in the treatment, but only for compliers induced to cross the threshold.

To reiterate, �∗ is identified under standard LATE assumptions regarding the binarised treat-
ment only, in contrast to �M . However, a clear drawback of �∗ in terms of identification is that
it includes the causal effects of off-threshold shifts in the treatment induced by the instrument,
not only effects at the threshold. In the context of the returns to college, a large �∗ might either
be caused by a large threshold effect of obtaining versus just not obtaining a college degree or by
off-threshold effects at different margins like attending but dropping out of college versus a high
school degree. Alternatively, �∗ might be a weighted average of both threshold and off-threshold
effects. In contrast to �w, however, �∗ only includes compliers induced to cross the threshold by
the instrument. Furthermore, the size of the complier groups crossing different levels of education
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Instruments and binarised treatment 545

is identifiable, shedding some light on the size of the complier groups that enter the identified
parameter �∗.

From the perspective of a policymaker aiming at evaluating a binarised treatment like a college
degree, �M seems to be an attractive parameter, corresponding to the effect of obtaining versus
just not obtaining a college degree. However, if the assumptions required for the identification of
this parameter appear too strong in practice, one is left with the choice between the reduced form
effect of the instrument on the outcome or the treatment effects �w and �∗ for policy advice. The
reduced form effect may not appear relevant in many contexts unless the instrument itself is an
interesting policy. In our empirical example outlined below the reduced form is the effect of living
close to a four-year college on wages and geographical distance to college is not a typical target
of policy interventions. The treatment effects of education among compliers therefore appear
more relevant. In contrast to �w, the parameter �∗ includes only effects of educational shifts for
people who are induced to cross the policy threshold of interest, e.g., obtaining a college degree,
however, at the cost of stronger identifying assumptions.

Furthermore, if interest lies in the treatment effect associated with a policy that does not exclu-
sively affect compliers at the threshold alone, �∗ may appear more relevant than �M , precisely
because it includes such policy-induced off-threshold shifts in the treatment. For instance, waiv-
ing tuition fees for students that successfully accomplish a study programme and obtain a college
degree might not only induce compliers in the final year (i.e., at the threshold) to finish college
but also those who would otherwise have dropped out already in earlier years (i.e., off threshold).
Indeed, it is likely that many policies share the property that they shift the treatment of compliers
from various treatment levels below the threshold to various levels above.

We subsequently discuss another special case of Assumption 3, which allows identifying both
�∗ and �w based on D∗, even when the multivalued treatment is unobserved. As postulated in
Assumption 4, we assume that all compliers in the population switch their treatment from the
lowest (D0 = 0) to the highest (D1 = J ) possible treatment value in response to the instrument,
which rules out compliers with other treatment margins affected. This implies that the complier
population remains constant across values of j .

ASSUMPTION 4 (CONCENTRATION OF COMPLIERS AT EXTREME TREATMENT VALUES):
I {D1 ≥ j > D0} = I {D1 ≥ j ∗ > D0} for all j, j ∗ ∈ {1, ..., J }.

This assumption is stated in terms of indicator functions rather than compliance probabilities
as in Assumption 3∗. The reason is that while constant complier sets across j imply constant
compliance probabilities, the converse is not true. There might, for example, exist compliers that
shift D from 0 to 1 and others that shift from 1 to 2 in response to the instrument. If the shares
of these complier groups are the same, the complier probabilities would remain constant across
j ∈ {1, 2}, despite the existence of compliers at intermediate treatment values. Proposition 2
states the identification of �∗.

PROPOSITION 2 (IDENTIFICATION OF �* UNDER ASSUMPTION 4): Under Assumptions 1
and 4, (3.11) simplifies to

E(Y |Z = 1) − E(Y |Z = 0)

=
⎧⎨
⎩

J∑
j=1

E[(Yj − Yj−1)|D1 ≥ j ∗ > D0]

⎫⎬
⎭ · Pr(D1 ≥ j ∗ > D0), (3.12)
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546 M. Andresen and M. Huber

such that WD∗ = �∗.

We also note that �∗ now corresponds to the sum of impacts related to unit changes in treatment
D across the entire support. This implies �w = �∗/J , i.e., the average effect of unit changes
in the multivalued treatment corresponds to the sum of effects across all possible unit changes
divided by the number of possible treatment states J . The reason is that under Assumption 4,
the weights in (3.3) become Pr(D1≥j∗>D0)

J ·Pr(D1≥j∗>D0) = 1/J , while in (3.2), E(Yj − Yj−1|D1 ≥ j > D0) =
E(Yj − Yj−1|D1 ≥ j ∗ > D0). Therefore,

�w = E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)

= E(Y |Z = 1) − E(Y |Z = 0)

E(D∗|Z = 1) − E(D∗|Z = 0)

/
J = �∗

J
. (3.13)

Assumption 4 thus allows identification of �w using the binarised treatment, even when the
underlying multivalued treatment is unobserved.

4. TESTING ASSUMPTIONS 3, 3*, AND 4

As discussed in Section 3, identification of causal effects with binarised treatments may rely on
assumptions about the off-threshold treatment effects such as Assumption 2 or 2∗, for which to
the best of our knowledge no tests exist. In this section we propose tests for Assumptions 3, 3∗,
and 4, which rely on Assumption 1. We point out that if Assumption 1 is violated, this may also
contribute to a rejection of the null hypotheses described below, even though the methods are not
tailored to testing this assumption. We also emphasise that we test necessary, albeit not sufficient
conditions for the validity of Assumptions 3 and 4. For this reason, a failure to reject the null is
no proof for the satisfaction of these assumptions, even when Assumption 1 holds. A rejection,
however, points to the invalidity of the respective Assumptions 3 or 4 (and/or Assumption 1, if
its validity cannot be presumed), casting doubts on the IV approach using the binarised treatment
unless one intends to rely on Assumption 2. In the case of Assumption 3∗, however, we test
both necessary and sufficient conditions, implying that, asymptotically, a nonrejection implies
the satisfaction of this assumption conditional on Assumption 1.

Under the satisfaction of Assumption 3, it must hold that the share of compliers whose treatment
is induced to pass j by the instrument weakly increases when gradually increasing j up to j ∗,
while weakly decreasing thereafter. The reason is that Assumption 3 requires that j ∗ captures
all compliers, implying that the first stage is maximised at the threshold. Formally, the following
moment inequality constraints need to hold:

Pr(D1 ≥ j ′ > D0) ≥ Pr(D1 ≥ j ′′ > D0) for all j ∗ ≥ j ′ > j ′′ > 0,

Pr(D1 ≥ j ′ > D0) ≤ Pr(D1 ≥ j ′′ > D0) for all J ≥ j ′ > j ′′ ≥ j ∗. (4.1)

Proof. Consider the first line of (4.1) and note that

Pr(D1 ≥ j ′ > D0) = Pr(D1 ≥ j ′ > j ′′ > D0) + Pr(D1 ≥ j ′ > D0 ≥ j ′′)

= Pr(D1 ≥ j ′′ > D0) + Pr(D1 ≥ j ′ > D0 ≥ j ′′). (4.2)

The first equality follows from the law of total probability and the second from Assumption 3.
To see this, note that Pr(D1 ≥ j ′′ > D0) = Pr(D1 ≥ j ′ > j ′′ > D0) + Pr(j ′ > D1 ≥ j ′′ > D0).
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However, by Assumption 3, Pr(j ′ > D1 ≥ j ′′ > D0) = 0 for any j ′ ≤ j ∗, such that Pr(D1 ≥
j ′′ > D0) = Pr(D1 ≥ j ′ > j ′′ > D0). Therefore, it follows from Pr(D1 ≥ j ′ > D0 ≥ j ′′) ≥ 0
that Pr(D1 ≥ j ′ > D0) ≥ Pr(D1 ≥ j ′′ > D0). The proof of the second line of (4.1) is analogous
and is therefore omitted. �

By Assumption 1(a) and (b), (4.1) implies (in analogy to the discussion in (3.8) for Pr(D1 ≥
j ∗ > D0)) that

βj ≥ βj ′ for all j ∗ ≥ j > j ′ > 0,

βj ≤ βj ′ for all J ≥ j > j ′ ≥ j ∗, (4.3)

where βj = Pr(D ≥ j |Z = 1) − Pr(D ≥ j |Z = 0) denotes the first stage effect of Z on the
probability that D is larger or equal to some value j . This motivates the null hypothesis in
Proposition 3 for testing Assumption 3 conditional on the satisfaction of Assumption 1.

PROPOSITION 3 (NULL HYPOTHESIS UNDER ASSUMPTION 3) : Under Assumptions 1 and 3,

H0 :
βj+1 − βj ≥ 0, for all j∗ > j > 0,

βj − βj+1 ≥ 0, for all J > j ≥ j∗. (4.4)

It is important to see that the satisfaction of this null hypothesis is necessary, but not sufficient
for Assumption 3. One can easily construct cases in which the weak inequalities hold, even
though a subset of individuals comply off threshold. Concerning the practical implementation, it
suffices to implement the test for adjacent βj parameters because of their nested nature: β2 ≥ β0

provide no additional restrictions on the data when β2 ≥ β1 and β1 ≥ β0. These conditions can be
verified using testing procedures for moment inequality constraints (see, for instance, Andrews
and Shi, 2013).

An implementation is available in the ‘cmi test’ command for the statistical software ‘Stata’
(Andrews et al., 2017), which we use in our application presented in Section 5. To this end we
reconsider the first line of (4.4) and note that

βj+1 − βj = Pr(D ≥ j + 1 | Z = 1) − Pr(D ≥ j + 1 | Z = 0)

− Pr(D ≥ j | Z = 1) + Pr(D ≥ j | Z = 0)

= Pr(D = j | Z = 0) − Pr(D = j | Z = 1). (4.5)

A symmetric argument follows for the second line. Therefore, the sample analogue of (4.4) can be
rewritten in the following way based on inverse probability weighting by E(Z) and 1 − E(Z):

E(mj (D,Z)) ≥ 0 (4.6)

where mj (D,Z) = I {D = j} E(Z) − Z

(1 − E(Z))E(Z)
for j ∗ > j ≥ 0

and mj (D,Z) = I {D = j} Z − E(Z)

(1 − E(Z))E(Z)
for J > j ≥ j ∗.

These constraints match the structure of the ‘cmi test’ command of Andrews et al. (2017), which
verifies the sample analogue of (4.6). Testing may be implemented both based on Cramer–von
Mises and Kolmogorov–Smirnov-type statistics on average or maximum violations across j ,
respectively, and both are considered in our empirical application.
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548 M. Andresen and M. Huber

A rejection of (4.4) indicates the presence of nonthreshold compliance, i.e., of individuals
who respond to the instrument, but are not induced to cross threshold j ∗. In this case, point
identification is generally lost, unless one imposes Assumption 2 or a linear IV model (using
the original treatment variable D). However, researchers could still follow the path of partial
identification (Manski and Pepper, 2000) and estimate upper and lower bounds on the LATE
under invalid instruments (see Flores and Flores-Lagunes, 2013) or consider sensitivity checks
for the robustness of the LATE under violations of the exclusion restriction (see Conley et al.,
2012; Huber, 2014; Van Kippersluis and Rietveld, 2018).

Concerning Assumption 3∗, both a necessary and sufficient condition for its satisfaction is that
(conditional on Assumption 1) any first stage effect of Z on the probability that D ≥ j must be
zero unless j = j ∗, because all compliers must be located at the threshold. This is formally stated
in Proposition 4.

PROPOSITION 4 (NULL HYPOTHESIS UNDER ASSUMPTION 3*): Under Assumptions 1 and
3∗,

H0 : βj = 0 for all j �= j∗. (4.7)

Finally, a necessary condition for Assumption 4 is that the first stages or complier probabilities
are constant across j . As highlighted in the discussion of Assumption 4 in Section 2, this implies
a concentration of compliers at extreme treatment values, but is not sufficient for ruling out other
complier groups. The hypothesis to be tested is given in Proposition 5.

PROPOSITION 5 (NULL HYPOTHESIS UNDER ASSUMPTION 4): Under Assumptions 1 and 4,

H0 : βj = βj+1 for all j < J. (4.8)

Both (4.7) and (4.8) can be tested by means of an F -test in a system of equations in which
treatment indicator functions I {D ≥ j} at different values j are regressed on a constant and Z.

If there is heterogeneity in the first stage coefficients across subgroups, performing our tests
within cells of X may provide additional power to reject Assumptions 3, 3∗, or 4. The reason
is that violations of, e.g., Assumption 3 in some subgroups may be averaged away in the full
sample. Control variables may be included as conditioning set in the moment inequality- and
regression-based tests. In (4.6), for instance, control variables can be considered by replacing
E(Z) everywhere with the conditional expectation of Z given the controls, also known as the
instrument propensity score, and including conditioning on X in the mj function, see example 6
in Andrews and Shi (2014). This allows us to jointly test (4.6) within cells of X.

Furthermore, the outcome variable may also be used as a conditioning variable in this setup,
which may likewise increase power. Although the complier shares in the population cannot be
consistently estimated when conditioning on the outcome as it is endogenous to the instrument,
the sign of any coefficient βj remains weakly positive when conditioning on Y if monotonicity as
postulated in Assumption 1 holds. Therefore, the bias due to conditioning on the outcome cannot
entail a violation of the conditions in (4.4) if Assumption 3 is satisfied. This in turn means that the
nonsatisfaction of (4.4) conditional on Y provides evidence for a violation of Assumption 3. The
Monte Carlo simulations in Appendix A illustrate this implication and show how conditioning
on the outcome can lead to an increase in testing power.

We note that the testing approaches can be extended to multivalued discrete as well as con-
tinuous instruments. For multivalued discrete instruments, the conditions given in (4.4), (4.7),
and (4.8) must hold when defining βj = Pr(D ≥ j |Z = z′) − Pr(D ≥ j |Z = z′′) for any values
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Table 1. Summary statistics.

Variable N Mean SD Min Max Comment

Years of schooling 3,010 13.3 2.68 1 18 1976
College dummy 3,010 0.27 0.44 0 1 Dummy for 16 or more years of education
College proximity 3,010 0.68 0.47 0 1 = 1 if near 4-year college in 1966
Log wage 3,010 6.26 0.44 4.6 7.8 log hourly wage in cents, 1976
Age 3,010 28.1 3.14 24 34
Father’s education 2,320 10.0 3.72 0 18
Mothers’ education 2,657 10.3 3.18 0 18
Region 3,010 4.64 2.27 1 9 Regional dummy, 1966
SMSA 3,010 0.71 0.45 0 1 Metropolitan area of residence dummy
Black 3,010 0.23 0.42 0 1
Family type 2,796 1.07 0.38 0 2 Single mom/both parents/step-parent

Source: National Longitudinal Study of Young Men, 1966 and 1976 waves.

z′ > z′′ in the support of Z. For continuous instruments, the conditions given in (4.4), (4.7),
and (4.8) must hold for infinitesimal increases in Z across the entire support of Z. In this case,
βj = ∂ Pr(D≥j |Z=z)

∂z
for any z in the support of Z.

Finally, we point out that even though Assumptions 3, 3∗, and 4 are framed in the context of IV
methods, our testing approaches can be applied whenever one is interested in checking if some
variable exclusively affects a particular margin of another variable. For instance, a test based
on (4.4) may be used to verify whether a randomised labour market programme shifts labour
supply only at the extensive margin (working versus not working) or also at the intensive margin
(working more versus less hours). A test based on (4.7) could be applied to investigate whether
participants are exclusively shifted from no to very low levels of labour supply and one based on
(4.8) to test whether participants are exclusively shifted from no to full time work.

5. EMPIRICAL APPLICATION

We apply our tests to labour market data previously analysed by Card (1995) that come from the
1966 and 1976 waves of the US National Longitudinal Survey of Young Men (NLSYM). Card
(1995) considers a dummy for proximity to a four-year college in 1966 as an instrument for the
likely endogenous schooling decision to estimate returns to schooling in 1976. The intuition is
that proximity should affect the schooling decision of some individuals, for instance due to costs
associated with going to college when not living at home. The original data contain years of
schooling as measure of education, but similar to Carneiro et al. (2011) and Mourifié and Wan
(2017), we binarise the treatment to indicate having at least 16 years of education, which roughly
corresponds to a four-year college degree.

The variables used in our analysis are summarised in Table 1. The multivalued treatment is
years of schooling in 1976, which varies from 1 to 18 years with a mean of 13.3. Our binarised
treatment is a dummy for having 16 or more years of schooling, which has a mean of 0.27. The
instrument is a dummy equal to 1 for people living close to a four-year college in 1966. The
outcome is the log of hourly wages in cents, measured in 1976. In addition, we report a range
of control variables, including age, parents’ education, geographic dummies, race, and a dummy
for family type at age 14.
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Figure 1. Effects of living close to a four-year college on years of education. Figure shows the estimated
impact on binary measures of years of education equal to or above j of living close to a four-year college.
The threshold for the binarised treatment is 16 or more years of education as indicated by a dashed line,

corresponding roughly to a four-year college degree.
Source: Data from NLSYM.

To illustrate our tests, we first estimate the βj parameters outlined in Section 4, which reflect
increases in the probability of having j or more years of schooling when living close to a four-year
college compared to living further away, for all margins of education. To this end we estimate a
system of equations in which the indicators of having at least j years of education are regressed on
the instrument. Figure 1 displays the βj estimates along with pointwise 95% confidence intervals.

In alternative specifications, we interact the entire specification with fully flexible controls to
estimate cell specific βj coefficients. The reason for this is that proximity to college is likely
associated with factors also affecting wages, like local labour market conditions or family back-
ground, which would violate Assumption 1. As testing Assumptions 3, 3∗, and 4 is conditional on
Assumption 1, we control, similarly to Card (1995), for regional variables (standard metropolitan
statistical area [SMSA] and region in the US) and socio-economic factors (e.g., parents’ education
and ethnicity) to increase plausibility of IV exogeneity.

Inspecting Figure 1 allows eye-balling the plausibility of our assumptions for a case with no
controls. We observe that the pattern of coefficients are not consistent with Assumption 3∗, which
requires all coefficients except β16 to be 0. Neither does it appear to support Assumption 4, which
requires the coefficients to be constant across j . Concerning Assumption 3, notice that the dashed
line indicating the cut-off value for defining the binarised treatment is to the right of (rather than
at) the mode of the βj estimates, pointing to violations of the conditions in (4.1).

To formally investigate Assumption 3, we test the constraints in (4.6) using the ‘cmi test’
command of Andrews et al. (2017) based on Cramer–von Mises and Kolmogorov–Smirnov test
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Table 2. Tests of instrument validity with a binarised treatment.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Conditional moment inequalities tests of Assumption 3
Inequalities 16 15 15 13 15 15 15 15 15
Cells of X 11 19 19 18 6 12 4 10
Inequalities tested 16 135 161 162 184 69 117 49 112

Cramer–von Mises type test statistic
Test statistic 1.618 2.937 3.483 2.452 4.149 1.961 3.366 3.912 4.623
Critical value 1% 2.186 4.877 4.213 3.981 4.459 3.238 3.798 3.493 4.345
Critical value 5% 1.614 4.202 3.578 3.337 3.827 2.637 3.186 2.794 3.721
Critical value 10% 1.354 3.894 3.258 3.062 3.537 2.367 2.877 2.536 3.422
p-value 0.049 0.459 0.062 0.335 0.024 0.234 0.033 0.002 0.004

Kolmogorov–Smirnov type tests statistic
Test statistic 13.57 10.73 13.62 11.13 15.00 7.80 20.09 25.09 27.31
Critical value 1% 18.33 21.10 19.78 18.67 20.77 18.56 19.71 18.07 19.65
Critical value 5% 13.53 16.87 15.46 14.62 16.00 14.22 15.27 14.15 15.95
Critical value 10% 11.36 15.12 13.63 12.68 14.26 12.37 13.41 12.31 14.27
p-value 0.049 0.436 0.100 0.191 0.076 0.451 0.009 0.000 0.000

Panel B: F-test of Assumption 3∗

F 4.532 1.521 2.003 1.609 2.200 1.871 1.874 1.854 1.340
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
Constraints tested 16 135 162 164 184 69 118 49 112

Panel C: F-test of Assumption 4
F 4.639 1.510 2.082 2.067 2.434 2.074 2.067 2.260 1.631
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Constraints tested 16 146 180 180 201 74 127 52 120

Controls

Age �
Fathers’ education �
Mothers’ education �
Region �
SMSA �
Black � �
Family type � �
Quantiles of Y 2 4 10

N 3,010 3,010 2,320 2,657 3,010 2,796 2,796 3,010 3,010

Notes: Panel A shows test statistics, critical values, and resulting p-values from tests of the moment inequalities in (4.4),
tested using cmi test for Stata (Andrews et al., 2017). Panel B shows the results from an F -test of βj = 0 for all j �= j∗
and all cells of X, testing the special case in Assumption 3∗. Panel C shows F -tests of whether all βj are the same (within
cells of X), testing the special case in Assumption 4. Controls as indicated in the bottom panel. Singleton groups are
dropped.

statistics.8 The results are provided in panel A of Table 2. For interpretation, it is important to keep
in mind that we test necessary, but not sufficient, conditions for the assumption to hold. Therefore,

8 A Stata program to be found on www.github.com/martin-andresen/mvttest estimates and plots the βj coefficients
(or the maximum violations of Assumption 3 across groups, if using controls), tests Assumption 3∗ and 4 using F -tests,
constructs the moment inequalities, and tests them using ‘cmi test’.
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under Assumption 1, the rejection of the null hypothesis provides evidence against the exclusion
restriction unless we impose Assumption 2, i.e., no wage effect of education among off-threshold
compliers, which appears unlikely to hold. However, a nonrejection does not automatically imply
the satisfaction of Assumption 3 and thus, the exclusion restriction. Without including control
variables, the p-value of both the Cramer–von Mises and Kolmogorov–Smirnov statistics is
0.049, pointing to a violation of the constraints in (4.4).

When including control variables, we test for violations within cells of X, estimating the βj

coefficients in each cell and testing Assumptions 3, 3∗, and 4 jointly for all cells. Because there
are now multiple sets of βj coefficients, plotting them all is infeasible. Instead, we plot the
maximum violation of Assumption 3 across cells using red bars in Figure 2. For comparison, we
also plot the violations from the case with no controls using blue bars. There are indications of
violations in some cells at values of j where we found no evidence of violation in the case with
no controls. This indicates that there are violations in some groups of X that are averaged away
when estimating a single set of βj coefficients.

The formal tests with controls are provided in columns (2)–(9) of Table 2. We find that
the violations displayed in Figure 2 are statistically significant in many of the specifications,
indicating the presence of off-threshold compliers in several cells of X and off-threshold levels
of j . In particular, Assumption 3 is rejected in some subgroups of log wage, as seen in columns
(7)–(9). This rejection is in line with findings in Mourifié and Wan (2017) who jointly test the
monotonicity assumption and exclusion restriction with regard to the very same binarised college
treatment based on constraints on complier densities (see Balke and Pearl, 1997). They reject
the null within a specific cell of X even when adjusting p-values for multiple hypothesis testing.
Conditional on the satisfaction of Assumption 1 and, thus, monotonicity, Mourifié and Wan (2017)
test for the joint violation of our Assumptions 2 and 3 (implying the violation of the exclusion
restriction), while our test is for Assumption 3 alone. The fact that the two conceptually quite
different testing approaches both reject the null in several cells of X suggests that IV validity is
likely violated for the binarised treatment, even conditional on control variables.9

Concerning Assumptions 3∗ and 4, we test the null hypotheses in (4.7) and (4.8) using F -tests
in our system of equations used to estimate the βj parameters.10 The results are provided in panels
B and C of Table 2, respectively. Both assumptions are rejected in all specifications, suggesting
that compliers are neither exclusively situated at the threshold (i.e., switching from 15 to 16 years
of education in response to the instrument), nor exclusively switching from the lowest to the
highest level of education. Therefore, the weighted average of treatment effects based on unit
changes, �w, cannot be recovered based on the binarised treatment.

Overall, our results indicate that the exclusion restriction is likely violated for the binarised
education measure considered unless Assumptions 2 holds. Even though the results suggest that
proximity to a four-year college indeed affects education, it may do so not exclusively through
obtaining at least a four-year college degree. Rather, the instrument seems to also affect the
probability of both starting college without finishing and of obtaining a two-year college degree.
However, such possibilities are ignored when defining the treatment as a four-year college degree,
violating the exclusion restriction.

9 If only one of the two tests rejected the null, IV validity would still appear doubtful, as either method can only
test for necessary, but not for sufficient conditions of the respective assumptions. For this reason the tests might not
simultaneously reject the null even in large samples and if both Assumptions 2 and 3 are violated.

10 The system of equations is estimated in a stacked regression using the reghdfe command (Correia, 2014) to account
for the covariance of the βj estimates. Standard errors are clustered at the individual level and robust to heteroscedasticity.
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Figure 2. Maximum violations of Assumption 3 across cells. Figure shows the maximum violations across
cells of Xas indicated in each panel title, plotted in red Violations are βj − βj+1 and βj+1 − βj for j ≥ j ∗.

For comparison, the violations in the case with no controls are plotted in blue. The threshold for the
binarised treatment (j ∗) is 16 or more years of education as indicated by a dashed line, corresponding

roughly to a four-year college degree.
Source: Data from NLSYM.
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6. CONCLUSION

In the context of IV-based estimation, we discussed threats to the exclusion restriction when
binarising a multivalued endogenous treatment. Such a violation occurs whenever (a) the IV
affects the multivalued treatment within support areas below and/or above the threshold for
binarisation and (b) such IV-induced changes in the multivalued treatment affect the outcome. As
a consequence, IV with a binarised treatment identifies the causal effect among individuals whose
binary treatment complies with the IV only if either (a) or (b) can be ruled out. Furthermore, we
described the causal parameter that can be identified under these assumptions, which are weaker
than previous assumptions in, e.g., Marshall (2016).

More importantly, we showed that (a) has implications that can be tested in a moment inequality
framework when the original treatment variable prior to binarisation is observed. Furthermore,
when ruling out (a) and restricting the support of the multivalued treatment in a particular way,
not only the average complier effect of the binarised treatment, but also a weighted average effect
of unit changes of the multivalued treatment is recovered based on the binarised treatment. We
derived testable implications of these support restrictions that can be verified by standard F -tests.
Finally, we provided an empirical illustration to the estimation of returns to a four-year college
degree, a binarised treatment generated from the multivalued years of education. Our results
suggested that the exclusion restriction is violated for such a coarse definition of treatment unless
Assumption 2 holds.

As a final word of caution, we emphasise that the threats to both the exclusion restriction
and interpretation of identified parameters not only arise when binarising a treatment. The issues
discussed in this paper prevail whenever the IV affects a finer measure of treatment than used by
the researcher in their IV analysis, even when finer treatment measures are not available in the
data. The conditions in this paper highlight under which circumstances the IV validity for the
underlying finer treatment measure carries over to a more coarsely defined treatment, and what
parameters are identified in such a case.
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APPENDIX A: SIMULATIONS WHEN CONDITIONING ON THE OUTCOME

Our simulation study illustrates how conditioning on the outcome may increase the power of testing
Assumption 3. The treatment may take three values, D ∈ {0, 1, 2}. We set j ∗ = 2 and would like to test
whether β2 − β1 ≥ 0 is violated. The data generating processes (DGP) considered are defined in Table A1.
Defiers are ruled out by monotonicity and the population shares of never and always takers are also set to 0
(as they are asymptotically irrelevant for the power of the tests). As the expected value of the test statistic in
the full sample corresponds to E(β2 − β1) = π12 − π01 = 0, we should not be able to detect violations of
Assumption 3 in the full sample even thought 30% of the population do not satisfy Assumption 3. However,
we may be able to detect such violations in subsamples of Y , because the endogeneity of Y implies that
the shares of the different complier groups are different within cells of Y than in the full population. This
allows us to detect the presence of the off-threshold complier group C01 even if the complier shares are not
consistently estimated with regard to the total population.

Table A2 shows the results for 1,000 simulations of each of the DGPs outlined in Table A1, using 500
observations per simulation. The first column (“All”) provides the results of a test of Assumption 3 based
on (4.4) in the full sample. As expected, we cannot detect violations of Assumption 3 because the presence

Table A1. Data generating process.

Complier group C01 C02 C12

D0 0 0 1
D1 1 2 2
E(Z) 0.5 0.5 0.5
Population share π 0.3 0.4 0.3

Case 1 Case 2 Case 3 Case 4

Pr(Y = 1 | Z = 0, C) 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.1 0.4 0.2 0.1
Pr(Y = 1 | Z = 1, C) 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.4 0.3 0.5 0.4 0.4

Table A2. Simulation results, conditioning on Y .

All Case 1 Case 2 Case 3 Case 4

Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1

β1 0.70 0.70 0.70 0.65 0.77 0.79 0.57 0.74 0.64
(0.030) (0.038) (0.047) (0.039) (0.043) (0.034) (0.049) (0.037) (0.046)

β2 0.70 0.70 0.70 0.70 0.70 0.69 0.73 0.69 0.73
(0.028) (0.032) (0.066) (0.032) (0.066) (0.032) (0.060) (0.032) (0.060)

β2 − β1 − 0.002 − 0.003 0.0009 − 0.053 0.075 0.098 − 0.16 0.047 − 0.084
(0.042) (0.050) (0.080) (0.051) (0.077) (0.047) (0.079) (0.050) (0.076)

p-value 0.60 0.55 0.39 0.15 0.36
(0.37) (0.31) (0.31) (0.20) (0.30)

rejection rate 0.032 0.028 0.10 0.42 0.13
(0.18) (0.17) (0.30) (0.49) (0.34)

true β2 − β1 0 0 0 − 0.046 0.086 0.134 − 0.273 0.090 − 0.182

Notes: Table reports results from 1,000 simulations of the four different data generating processes described in Table A1,
using 500 observations per simulation. The reported values are the means of the respective parameters across the 1,000
simulations, standard deviations are reported in parentheses. The rejection rate is based on the 5% level of significance.
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Figure A1. Density plots of test statistics. True values indicated with vertical lines.

of the complier group C01 is averaged out by the presence of the equally sized complier group C12. Across
subsamples of Y in cases (1)–(4), we may detect violations whenever the DGP generates imbalances in
the complier groups across cells of Y . While this does not happen in case 1, where compliers violating
Assumption 3 are averaged out by nonviolating compliers even within cells of Y , we see an increase in
testing power in cases (2)–(4), where the different complier groups are shifted differently across Y by the
instrument. Figure A1 shows the distribution of the test statistic of each group and each of the four cases,
illustrating how conditioning on Y may detect the presence of off-threshold compliers.
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