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SOUTHERNMOST RECORD OF MEGADOLODUS (LITOPTERNA, PROTEROTHERIIDAE, 
MEGADOLODINAE) FROM THE LATE MIDDLE MIOCENE OF FITZCARRALD, PERUVIAN 

AMAZONIA, AND MESOWEAR ANALYSIS OF DIET IN MEGADOLODINE LITOPTERNS
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ABSTRACT—Megadolodinae is a clade of tropical bunodont litopterns that includes three previously recognized species 
from Miocene fossil sites from northern South America. Here, we report an additional occurrence of Megadolodus 
molariformis from the Middle Miocene exposures at the Fitzcarrald arch (Peruvian Amazonia), based on dental material, 
which represents the southernmost record of the clade. This discovery further increases the faunal similarity between 
Fitzcarrald and the coeval La Venta fauna of Colombia. Given the convergent evolution of the bunodont dentition of 
megadolodines with suoids (Old World pigs and New World peccaries), we tested the hypothesis of frugivory in 
megadolodines with a mesowear angle approach using modern pigs and peccaries. These analyses differentiate the diet of 
modern suoids and suggest that megadolodines had a more abrasive diet than most of these taxa, except for the grazing 
warthogs. The dentition of megadolodines shows similar levels of abrasion to modern babirusas, thereby suggesting that 
the latter may represent an appropriate modern analog.
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INTRODUCTION

The South American Native Ungulates (SANUs) are a dispa-
rate group of herbivorous ungulates grouped into up to seven 
clades (Astrapotheria, Didolodontidae, Kollpaniinae, Litop-
terna, Notoungulata, Pyrotheria, and Xenungulata) that occur 
in the South American fossil record from the early Paleocene 
up to the Late Pleistocene (Croft et al., 2020). Because of their 
isolation from other continents (Simpson, 1980), the SANUs rep-
resent natural evolutionary experiments, characterized by con-
vergent evolution of ecomorphologies similar to those of 
ungulates in other continents. Some examples include the large 
astrapotheres that, like proboscideans in other continents, had 
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a trunk and tusks to strip vegetation (Johnson & Madden, 1997), 
and some toxodontids such as Hoffstetterius that had a kerati-
nous horn on their heads like those of rhinoceroses on other con-
tinents (Saint-André, 1993).

The megadolodine litopterns are another example of conver-
gent evolution, closely resembling suoids, today represented by 
Suidae (the ‘Old World’ pigs) and Tayassuidae (the ‘New 
World’ peccaries), in their large, bunodont molars, and their 
robust femora and short tibiae and metatarsal III relative to 
other modern ungulates (Cifelli & Villarroel, 1997; Orliac 
et al., 2010). The two most well-studied megadolodine genera, 
Megadolodus and Neodolodus, also possess sharp tusks, analo-
gous to those of suoids (although formed from the incisors) (Car-
rillo, Suarez et al., 2023a). Three Megadolodinae species are 
currently recognized—Megadolodus molariformis, Neodolodus 
colombianus, and Bounodus enigmaticus, with M. molariformis 
and N. colombianus previously identified from the late Middle 
Miocene of Colombia (Carrillo et al., 2018; Carrillo, Suarez 
et al., 2023a; Cifelli & Diaz, 1989; Cifelli & Villarroel, 1997; Hoff-
stetter & Soria, 1986; McKenna, 1956), whilst B. enigmaticus is 
currently only known from the upper Urumaco Formation of 
Venezuela (Upper Miocene) (Carlini et al., 2006). The Megado-
lodinae therefore represent an extinct tropical ungulate clade, 
and one illustrating the faunal links between western Amazonian 
localities.

During the Middle Miocene, a number of factors drove the for-
mation of a wetland system in Amazonia (Antoine et al., 2016; 
Hoorn, Wesselingh, Hovikoski et al., 2010; Hoorn, Wesselingh, 
Ter Steege et al., 2010; Hoorn et al., 2022; Jaramillo et al., 
2017). Global sea level was intermittently high (Boonstra et al., 
2015; Hoorn, 1993), and Andean uplift drove flexural (Hoorn, 
1993; Sacek, 2014) and dynamic subsidence in the foreland 
basins (Bicudo et al., 2020; Eakin et al., 2014; Roddaz et al., 
2010), as well as increased rainfall due to orogenic effects 
(Poulsen et al., 2010). The Pebas Mega-Wetland System 
(PMWS), resulting from these geological processes, covered 
∼1,000,000 km2 and acted as an important biogeographic 
feature, driving the origination of a range of clades (Antoine 
et al., 2016; Hoorn et al., 2022; Marivaux, Adnet, Altamirano- 
Sierra, Pujos et al., 2016).

Few outcrops are available for the Middle Miocene interval 
in Western Amazonia (Antoine et al., 2013; Boivin et al., 2021; 
Marivaux et al., 2020; Negri et al., 2010; Stutz et al., 2022; 
Tejada-Lara et al., 2015) and much of our understanding of 
the faunal history of the region comes from three coeval 
locations from the late Middle Miocene Laventan Stage/Age 
(13.5–11.8 Ma; Madden et al., 1997)—La Venta in Colombia, 
and the Fitzcarrald Local Fauna and the TAR-31 fossil- 
bearing locality in Peru (Antoine et al., 2013; Negri et al., 
2010; Tejada-Lara et al., 2015). The La Venta area in particular 
has been investigated for over a century (Carrillo, Jaramillo 
et al., 2023; Kay et al., 1997) and has yielded the most speciose 
vertebrate assemblage from northern South America, with at 
least 75 mammal species that have been described (Carrillo, 
Jaramillo et al., 2023; Wilson & Parker, 2023). In contrast, 
the Peruvian faunas of Fitzcarrald and TAR-31 have been dis-
covered much more recently. Pioneering fieldwork performed 
in 2005 and 2007 along the Río Inuya, Río Mapuya, and Río 
Sepa led to the discovery of at least 24 mammalian taxa 
making up the Fitzcarrald local fauna (Antoine et al., 2007; 
Bianucci et al., 2013; Goillot et al., 2011; Pujos et al., 2013; 
Tejada-Lara et al., 2015). More recently, TAR-31 was discov-
ered in 2015 and investigated until 2019. In sharing most of 
its mammalian components with La Venta (metatherians, 
xenarthrans, notoungulates, megadolodines, rodents, and a 
unique primate), the TAR-31 locality has been unambiguously 
assigned to the Laventan Stage/Age (Boivin et al., 2021; Mar-
ivaux et al., 2020; Stutz et al., 2022).

In this study, we add to the mammalian faunal list of the Fitz-
carrald Local Fauna through the recognition of a new record of a 
megadolodine litoptern from dental material (a single isolated 
tooth) unearthed in a new locality in 2017 (named URU-208— 
Río Urubamba fossil-bearing locality 208) by a team made up 
of several of us (POA, APP, FLC, LM, FP, and ASM; see 
author contributions). Alongside this megadolodine, a dozen ver-
tebrate taxa are recognized at URU-208, including an unidenti-
fied stingray (dermal buckle), ray-finned fish (a large pimelodid 
catfish plus cynodontid, anostomid, and serrasalmine characi-
forms), a podocnemidid turtle (shell fragments), four crocodylo-
morphs (teeth of the sebecid cf. Langstonia sp., the caimanines 
Caiman sp. and Purussaurus sp., and an unidentified gavialoid), 
as well as two caviomorph rodents (a lower jaw and a molar 
assigned to ‘Scleromys’ sp. and Microsteiromys sp., respectively). 
We also consider the implications of the megadolodine litoptern 
for understanding the paleoenvironmental conditions of Western 
Amazonia in the Middle Miocene.

Megadolodines have been suggested to be frugivores based on 
their bunodont dentition and thick enamel (Cifelli & Villarroel, 
1997) and we use mesowear angles to quantify their diet relative 
to modern suoids with variable ecologies. Finally, we introduce a 
novel mesowear angle method for bunodont ungulates to test the 
hypothesis of similarity in the diets of megadolodines with those 
of modern suoids.

MATERIALS AND METHODS

Geological Context

The specimen was unearthed during an expedition in the Fitz-
carrald Arch in 2017. The URU-208 outcrop (S10°42.579′, W73° 
37.255′) is situated on the right bank of the Río Urubamba, 
upstream Atalaya city (Ucayali Department, Peruvian Amazo-
nia), at the base of the cliffs located immediately downstream 
of the Santa Clara Native Community. The concerned deposits, 
assigned to the Middle to Upper Miocene Formation (Espurt 
et al., 2007; LAGESA & C.F.G.S., 1997), consist of pinkish chan-
nelized conglomerates intercalated with silts and clays, forming 
an island by the dry season. The tooth was found in situ, 
embedded within a loose conglomerate with a sandy matrix, 
which allowed for manual preparation.

Both the fossil-bearing facies and associated faunal elements 
(especially the crocodylomorph community and the rodents) 
allow us to consider URU-208 as a new locality of the Fitzcarrald 
Local Fauna, consistently Laventan in age (Antoine et al., 2007; 
Tejada-Lara et al., 2015).

Mesowear Analysis

We compare the mesowear signal of specimens of megadolo-
dine litopterns to the signal from modern suoids to examine 
the diet of these fossil taxa. We largely focus on tropical rainfor-
est suoids (e.g., Babirusa, Dicotyles, and Tayassu) as potential 
ecological analogs but also include some larger open-habitat 
taxa (Phacochoerus) and ecologically more generalist taxa 
(Sus) for comparison. As far as we are aware, all modern suoid 
specimens included here were from wild individuals.

When possible, the modern specimens were scanned using the 
Polycam 3D scanning application (Polycam Inc., 2023), using the 
photogrammetry mode on an iPhone XR, and these scans were 
then loaded into Blender v3.1.0 (Blender Online Community, 
2022). For some modern specimens, measurements were taken 
manually using a handheld digital angle measuring device (Saar-
inen et al., 2015). For megadolodine specimens, we used pub-
lished 3D models (Carrillo, Suarez et al., 2023b), Polycam 
scans of the dentition of museum specimens, and in some cases, 
angles were measured from photographs taken from a buccal 
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and lingual direction using Fiji, an open-source software package 
for image processing (Schindelin et al., 2012).

The mesowear angle methodology uses principles that have 
been applied to other groups, including proboscideans (Saarinen 
et al., 2015), xenarthrans (Saarinen & Karme, 2017), and toxo-
dontids (Wilson et al., 2024). In Phacochoerus and in two Mega-
dolodus specimens (UNC-TATAC1 and UCMP 39270), angles 
were measured from the base of well-developed dentine valleys 
to the highest point of the ridges surrounding these valleys. In 
Phacochoerus, chosen dentine valleys were considered to rep-
resent a medium stage of wear, usually roughly halfway along 
the tooth (Saarinen et al., 2015). In the other specimens, we 
used intercusp facet angles as a mesowear angle (Saarinen & 
Lister, 2023; Saarinen et al., 2015; Xafis et al., 2020) (Fig. 1), 
with the angles measured between cusp tips and the valleys 
between them along intercusp wear facets. For all specimens 
(when possible), we took measurements on the buccal and 
lingual sides of the left and right dentition in both upper and 
lower jaws. We then separately averaged these angles for both 
the upper and lower dentitions, given that there were differences 
in the angles between the two. Where appropriate, we measured 
these intercusp facet angles on the second molar, but when this 
was either too heavily worn or unworn, either the first or third 
molar was used instead. Regardless of which tooth was used, 
the angles were measured between the metacone and the para-
cone and between the hypocone and the protocone in the 
upper molars (Table S1) as well as between the metaconid and 
the entoconid, and the protoconid and the hypoconid in the 
lower molars (Table S2). We tested for differences in mesowear 
angles between extant taxa using a non-parametric Kruskal– 
Wallis test. Visualizations of the resulting mesowear angles 
were made using ggplot2 (Wickham, 2016) for R 4.1.1 (R Core 
Team, 2021).

Institutional Abbreviations—AMU-CURS, Colección Paleon-
tológica de la Alcaldía Bolivariana de Urumaco, Urumaco, 
Venezuela; KNM, National Museums of Kenya, Nairobi, 
Kenya; MNHN, Muséum national d’Histoire naturelle, Paris, 
France; MPV, Museo Paleontológico de Villavieja, Villavieja, 
Colombia; MUN-STRI, Mapuka Museum, Universidad del 
Norte, Barranquilla, Colombia; MUSM, Museo de Historia 
Natural de la Universidad Nacional Mayor San Marcos, Lima, 
Perú; MZH, Finnish Museum of Natural History, Helsinki, 
Finland; RMCA, Royal Museum for Central Africa, Tervuren, 
Belgium; VPPLT, Vigías del Patrimonio Paleontológico, Museo 
de Historia Natural La Tatacoa, Villavieja, Colombia; UCMP, 
University of California Museum of Paleontology, Berkeley, 
CA, U.S.A.; UMZC, University Museum of Zoology Cambridge, 
Cambridge, U.K.; UNC, Departamento de Geociencias, Univer-
sidad Nacional de Colombia, Bogotá, Colombia.

SYSTEMATIC PALEONTOLOGY

Class MAMMALIA Linnaeus, 1758
Infraclass PLACENTALIA Owen, 1837
Order LITOPTERNA Ameghino, 1889

Family PROTEROTHERIIDAE Ameghino, 1887
Subfamily MEGADOLODINAE Cifelli & Villarroel, 1997

Genus MEGADOLODUS McKenna, 1956
MEGADOLODUS MOLARIFORMIS McKenna, 1956

Fig. 2A–D

Holotype— UCMP 39270, part of left mandible with complete 
m1, labial part of p4 and roots of p3 and m2, from UCMP 
Locality V4932 (Monkey Beds, Villavieja Formation, Middle 
Miocene, Laventan SALMA), Huila, Colombia.

Referred Material—MUSM 4963, isolated right upper molar 
(M1?).

Locality, Horizon, and Age—URU-208 (S10°42.579′, W73° 
37.255′), Fitzcarrald Local Fauna, Ipururo Formation (Middle 
to Upper Miocene, Laventan SALMA), Ucayali Department, 
Peru.

Description—MUSM 4963 is a low-crowned bunodont upper 
molar with four roots. It is roughly quadrangular in occlusal 
view, with a length of 15.36 mm and a maximum width of 19.20 
mm. It has been superficially eroded (smooth enamel surface) in 
a channel before deposition in the Ipururo conglomerate. It has 
thick enamel, characteristic of M. molariformis (Cifelli & Villar-
roel, 1997) and has a well-developed bulbous/inflated paracone, 
metacone, protocone, and hypocone, alongside a strong mesiolin-
gual cingulum. Buccally, only the mesostyle is visible (very small 
but well-defined). The metastyle and parastyle are absent. The 
metaconule and paraconule are both conspicuous. The metaco-
nule is equidistant between the metacone and the hypocone. 
The protocone is displaced distally compared with a buccolingual 
straight line connecting the paracone and paraconule. A preproto-
crista connects the protocone to the paraconule and a preparaco-
nular crista extends mesiobuccally to reach the base of the mesial 
flank of the paracone, where a parastyle would occur (although 
there is no parastyle). Such cristae are missing for the metaconule, 
which is isolated. There are four divergent roots (two buccal and 
two lingual, broken towards their tips), which are elongated buc-
colingually and compressed mesiodistally.

Remarks—MUSM 4963 is morphologically indistinguishable 
from specimens of Megadolodus molariformis known from the 
late Middle Miocene mammal assemblage in La Venta, Colom-
bia (Carrillo, Suarez et al., 2023a; Cifelli & Villarroel, 1997). 
M1 and M2 in M. molariformis are very similar in overall mor-
phology. In the two known Colombian specimens with upper 
teeth (UNC TATAC1 and VLPPT 1588), the M2 is the largest 
tooth, and the dimensions of MUSM 4963 are slightly smaller 
than those for previously described second upper molars in 
M. molariformis. On the basis of the size of the tooth, we con-
sider it more likely that it represents a right M1. The currently 
uncataloged dental specimen from TAR-31 is a fragment of 
occlusal surface, the pattern of which is fully compatible with 
an upper molar of M. molariformis (Boivin et al., 2021; Carrillo, 
Suarez et al., 2023a; Cifelli & Villarroel 1997). Nevertheless, its 
fragmentary condition impedes further comparison with 
MUSM 4963.

Mesowear Angles

The mesowear angles in modern suoids show a large degree 
of interspecific variation, from <90° in Dicotyles tajacu and 
some specimens of Sus scrofa scrofa for example to >140° in 
the two species of Phacochoerus (Fig. 3). The mesowear 
angles in both lower (Kruskal–Wallis test: χ2 = 48.771, df = 12, 
p < 0.0001) and upper (Kruskal–Wallis test: χ2 = 51.148, df = 11, 
p < 0.0001) dentitions significantly differed between the 
species measured here. In many of the modern taxa, there is a 
large degree of intraspecific variation, which we propose 
reflects the variable, generalist diet of modern suoids. In 
general, there was more variation between different modern 
taxa in the upper molars and the angles measured in the 
upper toothrows were slightly higher than those in the lower 
toothrows. Of the 54 specimens for which both upper and 
lower teeth were available, 64.8% had higher mesowear 
angles in the upper dentition. The differences between 
modern taxa largely reflected known differences in their 
dietary preferences (e.g., Phacochoerus is known to consume 
more abrasive material as a result of a grazing lifestyle) 
(Souron, 2018), although the precise diet of each specimen 
was not known.

The measured angles in the megadolodine litopterns gener-
ally suggest that they were at the more abrasive end of the 
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dietary spectrum of our taxonomic sample, with larger (shal-
lower) mesowear angles than most suoids measured here. 
There is a large degree of overlap between the mesowear 
angles in these fossil taxa and those of Babyrousa babyrussa 
specimens, as well as similarities with Sus verrucosus and Sus 
scrofa andamanensis, although the latter two taxa are rep-
resented with only a single specimen and should therefore be 
treated with caution. In the megadolodine taxa where more 
than a single specimen could be measured, we find some 
degree of intraspecific variation, suggesting a variable, general-
ist diet like that of modern suoids. In the case of the lower jaw 
of Neodolodus colombianus, three specimens were measured, 
which varied in mesowear angle by ∼40°. MUN-STRI 16716 
(132.5°) is a highly worn lower jaw from the Castilletes 

Formation of La Guajira, Colombia, whilst VLPPT 1696 is a 
lightly worn specimen from La Venta (91.5°). The variability 
in N. colombianus could result from habitat-related differences 
in diet or from wear stage. We have here included all megado-
lodines regardless of wear stage for completeness, but this 
example highlights the effect that this factor may cause in 
interpretation of diet by mesowear.

DISCUSSION

Southernmost Record of a Megadolodine

The recognition of M. molariformis in the Fitzcarrald fauna of 
Peruvian Amazonia represents the southernmost occurrence of 

FIGURE 1. Intercusp facet angles measured in modern suoids and megadolodines from 3D scans. A, intercusp angle between paracone and metacone 
in right upper molar (M2), B, intercusp angle between paraconid and metaconid in right lower molar (m2) (Babyrousa babyrussa, UMZC H.12999, 
buccal view). Abbreviation: θ, measured intercusp angle.

FIGURE 2. A–F. Megadolodus molariformis upper dentition. A–D. Megadolodus molariformis right M1 (MUSM 4963) from the URU-208 locality of 
the Fitzcarrald Local Fauna in A, occlusal, B, buccal, C, distal, and  D, mesial views, respectively. E, UNC TATAC1, right maxilla with P4–M3. F, 
VPPLT 1588, left maxilla with M1–3. G, map of the occurrences of Megadolodinae in northern South America. Megadolodus molariformis silhouette 
from phylopic.org (Zimices/Julián Bayona, CC BY 3.0 DEED). Scale bar equals 10 mm.
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Figure 3. Mesowear angles for the extant suoids and megadolodine litopterns measured in this study. Megadolodines highlighted in red. A, upper 
dentition, B, lower dentition. Photographs are (top–bottom) VLPPT 1696, AMU-CURS 40, UNC TATAC1, MUSM 4963, VPPLT 974, and MUN- 
STRI 16716.
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Megadolodinae, with the Peruvian records expanding the range 
of this subfamily by ∼1500 km southwards. It strengthens the 
close relationship between the Fitzcarrald Local Fauna, TAR- 
31, and La Venta mammalian assemblages, with at least 12 ter-
restrial mammal genera (and possibly as many as 19) shared 
between these three faunas (Boivin et al., 2021; Carrillo et al., 
2015; Marivaux et al., 2020; Stutz et al., 2022; Tejada-Lara 
et al., 2015). The high faunal similarity between these localities 
presumably related to a partial continuity in the PMWS 
(Benites-Palomino et al., 2020, 2024; Salas-Gismondi et al. 
2015, 2016). Combining data from these three assemblages 
with those from elsewhere, e.g., Contamana, Peru (CTA-57 
and CTA-44 localities; Antoine et al., 2016), the Castilletes For-
mation, Colombia (Amson et al., 2016; Carrillo et al., 2018; 
Moreno et al., 2015; Suarez et al., 2016) and Miocene 
Ecuador (Cadena & Román-Carrión, 2018; Madden, 1990; 
Román-Carrión et al., 2021), there is increasing evidence for 
faunal and environmental consistency in the Middle Miocene 
of Western Amazonia. During this period, northwestern 
South America was dominated by the PMWS (Boonstra 
et al., 2015; Hoorn, Wesselingh, Hovikoski et al., 2010; 
Hoorn, Wesselingh, Ter Steege et al., 2010; Jaramillo et al., 
2017; Mora et al., 2010), and the Colombian, Peruvian, and 
Ecuadorian faunas were all recorded on the western edge of 
the PMWS (Antoine et al., 2007, 2016; Benites-Palomino 
et al., 2020; Marivaux et al., 2020), which would have acted as 
an important biogeographic barrier for terrestrial mammals 
(Hoorn et al., 2022).

Although these Western Amazonian terrestrial environ-
ments are generally assumed to be similar, their exact nature 
is unclear (Carrillo, Jaramillo et al., 2023). Several studies, par-
ticularly of La Venta, suggest that the environment was likely to 
have been forested, though with closely associated freshwater 
habitats (Catena & Croft, 2020; Croft, 2001; Kay & Madden, 
1997a, b; Spradley et al., 2019; Wilson & Parker, 2023), even 
if the extent to which there were open patches, possibly 
related to the action of megaherbivores (Kay & Madden, 
1997a), is unknown (Carrillo, Jaramillo et al., 2023). Particu-
larly given the limited paleobotanical data in La Venta (Car-
rillo, Jaramillo et al., 2023), one potential method of 
paleoenvironmental reconstruction during this period is 
through ecometrics, using the relationship between environ-
mental variables and functional traits on a community level 
(e.g., the relationship between mean community hypsodonty 
and rainfall; Eronen et al., 2010; Fortelius et al., 2002; Liu 
et al., 2012; Oksanen et al., 2019; Short et al., 2021; Vermillion 
et al., 2018).

Bunodonty has been recognized as a significant trait in pre-
vious ecometric studies (e.g., Liu et al., 2023; Saarinen et al., 
2021). Modern bunodonts are typically omnivorous or frugivor-
ous and a high proportion of bunodonts in a community indicates 
a warm, wet, and forested environment in other continents (Saar-
inen et al., 2021). Bunodonty is prevalent in modern primates, 
but the preservation of primates in the Miocene is sparce (Žlio-
baite ̇ & Fortelius, 2022), and with the exception of La Venta 
(Carrillo, Jaramillo et al., 2023b; Kay & Madden, 1997a, b) and 
TAR-31 (Marivaux et al., 2020), primates have largely not yet 
been recognized in the Middle Miocene sites of Western Amazo-
nia (e.g., Fitzcarrald; Marivaux, Adnet, Altamirano-Sierra, 
Boivin et al., 2016). The recognition of a bunodont taxon in the 
Fitzcarrald fauna is significant as it represents the first evidence 
of this important trait here and suggests that bunodonty could 
be a valuable characteristic for paleoenvironmental reconstruc-
tion in South America. It also reinforces the importance of con-
tinued fieldwork and taxonomic collections work for trait-based 
environmental reconstructions, because the identification of 
M. molariformis changes community trait averages for the Fitz-
carrald fauna.

Bunodont Mesowear and Modern Megadolodine Analogs

We find that mesowear angles differ between suoid species, 
reflecting dietary differences (Fig. 3) (Leus & Macdonald, 1997; 
Souron, 2018) and propose that these differences in mesowear 
angles can be used for dietary predictions in the fossil record 
of bunodont ungulates (both megadolodines and fossil suoids). 
Dietary differences between modern wild pigs have previously 
been identified using 3D dental topography (Rannikko et al., 
2020), with Phacochoerus found as having a higher angularity 
and orientation patch count and lower mean surface slope, sharp-
ness, and relief index for example. However, the mesowear 
angles that we measure here are faster and easier to measure 
than these methods, while nonetheless providing similar results. 
Furthermore, the mesowear angles specifically concentrate on 
worn features of the molar surface (dentine valleys and enamel 
facets) and can thus be argued to be more closely associated 
with wear effect specifically than for example mean surface 
slope. The angles are consistent with those from other taxa (Saar-
inen & Karme, 2017; Saarinen et al., 2015), with a larger (shal-
lower) angle corresponding to a diet high in abrasive material.

However, the threshold between a browsing and grazing signal 
in modern suoids seems to be higher than in other taxa (Saarinen 
& Karme, 2017; Saarinen & Lister, 2023; Saarinen et al., 2015). 
We propose this could be a result of minute abraded brachydont 
(MABRA) syndrome (Fortelius & Solounias, 2000), given the 
relatively small size of most modern forest suoids. On the other 
hand, the comparatively high angles of the grazing Phacochoerus 
in relation to grazing proboscideans might also result from small 
size, as a combination of relatively thick enamel and small size of 
the dentine pits at the cusp tips. Additionally, with a very high 
percentage of grass in its diet, 90–100% according to Codron 
et al. (2007), Phacochoerus may have a more heavily grass-domi-
nated diet than any extant or extinct proboscidean species (see 
Saarinen & Lister [2016, 2023] and Xafis et al. [2020] for com-
parative dietary information from proboscideans).

Low-abrasion diets were recorded for several forest-dwelling 
omnivorous modern taxa, including Dicotyles tajacu, Sus 
scrofa, and Potamochoerus larvatus. In tropical forests, 
D. tajacu is primarily frugivorous, though also consumes a high 
proportion of leaves and fibers, particularly in the dry season 
(Desbiez et al., 2009; Keuroghlian & Eaton, 2008). Sus scrofa 
has an extremely varied diet, largely consisting of plant material, 
though it is an opportunistic feeder, and the diet likely varies 
between individuals (Keuling et al., 2018). In a record of 
P. larvatus diet from the southern and eastern Cape, South 
Africa, Seydack (1990) found that the majority of consumed 
food was from leaf litter and subterranean sources.

As in proboscideans, the relatively shallow dentine valleys 
found in the two warthog species studied here reflect a grazing 
lifestyle. Butynski & de Jong (2018) have described Phaco-
choerus africanus as a “hypergrazer,” with a diet consisting of 
over 90% C4 grasses (Codron et al., 2007). Phacochoerus aethio-
picus similarly mostly consumes C4 grasses (86%) (Nyafu, 2009). 
The fact that this strong grazing diet was reconstructed in the 
mesowear angles supports the application of these methods to 
suoids.

In other taxonomic groups, differences in mesowear angles are 
often considered to reflect changes in dietary abrasion associated 
with consumption of grasses (Saarinen & Karme, 2017; Saarinen 
et al., 2015; Wilson et al., 2024). At an elevated mesowear angle 
relative to the previous species mentioned are a heterogeneous 
group of suoids containing Hylochoerus meinertzhageni, 
Tayassu pecari, Sus barbatus, Sus scrofa cristatus, and Potamo-
choerus porcus. Hylochoerus meinertzhageni largely feeds on 
grasses in tropical rainforest environments (D’Huart, 1976), 
although these grasses are presumably relatively less abrasive 
than in other environments. Potamochoerus porcus consumes a 
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large number of seeds as part of its diet (Melletti et al., 2018), and 
whilst our sample of this species is small, it is conceivable that 
hard seed predation would cause elevated abrasion compared 
with P. larvatus. This is also possible for T. pecari, as compared 
with D. tajacu, the seeds consumed by this species tend to be 
harder, presumably driving greater tooth wear (Kiltie, 1982). 
Sus barbatus seeks out the hard nuts of dipterocarps during 
masting (Caldecott, 1991; Leus & Macdonald, 1997; Luskin & 
Ke, 2018), and again the significant consumption of these nuts 
may be a part of the abrasive signal. An alternative factor that 
might influence abrasion is soil intake during rooting. 
However, we observe that some taxa that show high incidence 
of rooting behavior (e.g., Sus scrofa scrofa) (Keuling et al., 
2018) have relatively sharp mesowear angles, and so we consider 
seed consumption a more likely hypothesis.

The megadolodines generally possess mesowear angles that 
are slightly higher than those in most modern suoids, thereby 
suggesting that they had a more abrasive diet than most of 
these living taxa. However, a variety of explanations could 
produce this result. One is increased grass intake, whilst 
another explanation could be the consumption of abrasive soil 
material. During the Middle Miocene, there was volcanic activity 
close to La Venta in Colombia (Mora-Rojas et al., 2023; Zapata 
et al., 2023). The prevalence of volcanic ash would increase 
dietary abrasion relative to regions without volcanic activity 
(Madden 2015; Smith et al., 1977). In contrast to La Venta, no 
evidence for volcanism has been observed in Peru around Tara-
poto or Fitzcarrald. It is conceivable that this could explain why 
MUSM 4963 has a mesowear angle lower than in most La Venta 
Megadolodus specimens (Fig. 3A), although the value observed 
for MUSM 4963 is within the range of those at La Venta, and 
interindividual variability seems more likely. Mesowear analyses 
of other taxa at La Venta will help us to understand more about 
the paleoenvironment here, but other methodological 

approaches are needed for the non-bunodont ungulates, includ-
ing the other proterotheriid litopterns Mesolicaphrium sanalfo-
nense and Villarroelia totoyoi (Carrillo, Suarez et al., 2023a; 
Cifelli & Guerrero, 1997).

Given the variation within the diet of the suoids measured 
here, we believe that higher angles in megadolodines are most 
likely due to the increased consumption of hard fruits and 
seeds. In another group of fossil ungulates with no living relatives 
(e.g., Chalicotheriidae), microwear analyses have supported the 
idea that an abrasive mesowear signal is related to consumption 
of hard items such as fruit, seeds, and nuts (Schulz & Fahlke, 
2009; Schulz et al., 2007; Semprebon et al., 2011). Future 
studies may similarly use other dietary proxies like microwear 
to corroborate the mesowear results here. However, one 
modern suoid taxon studied here, Babyrousa babyrussa, overlaps 
with the mesowear signal from the megadolodines.

Quantitative analyses of the diet of babirusas are limited, 
though it seems that they largely favor the consumption of fruit 
and seeds, particularly including the toxic Pangium (Leus, 1996; 
Leus & Macdonald, 1997; Macdonald, 2018; Sheherazade et al., 
2018; Tulung et al., 2013). Contrary to other suids, babirusas do 
not have a well-developed rostral bone (os rostrale) in their 
nose, and this has been suggested to affect their dietary 
ecology, as they do not show the same level of rooting as other 
suoids (MacDonald, 1993). Megadolodine skulls are largely not 
available for comparison of this trait, with only one specimen 
from Neodolodus colombianus (VPPLT 1696). In this specimen, 
there are similarly no anterior rostral bones, though this could be 
because of damage, given that portions of the premaxilla and 
maxilla are missing (Carrillo, Suarez et al., 2023a). The ecological 
analogy of the megadolodines to modern babirusas, as indicated 
by the similar mesowear angles, is consistent with the interpret-
ation of Cifelli and Villarroel (1997) that they were probably 
largely fruit eaters.

Figure 4. Artistic reconstruction of Megadolodus molariformis from the Middle Miocene URU-208 locality of the Fitzcarrald Local Fauna. Recon-
struction by Miguel Hernandez.
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CONCLUSION

We describe a bunodont upper molar from the late Middle 
Miocene Fitzcarrald Local Fauna of Peruvian Amazonia as 
belonging to the proterotheriid megadolodine Megadolodus 
molariformis (Fig. 4). This record further increases the faunal 
similarity between Fitzcarrald and other Middle Miocene 
faunas from Western Amazonia, including La Venta (Colombia) 
and TAR-31 (Tarapoto area, Peru). This similarity increases the 
confidence in assignment of the fauna of the Fitzcarrald arch to 
the Laventan stage.

We use a novel mesowear angle approach in suoids to 
test the hypothesis of frugivory in megadolodines, including 
Megadolodus. Modern suoids vary significantly in their meso-
wear angles, reflecting differences in their dietary ecology. 
The most similar modern suoid (in terms of 
mesowear angles) is the babirusa, which may represent a 
reasonable analog, given that no modern relatives remain. 
The variability in modern suoids suggests that the mesowear 
angles used here are potentially applicable more generally, 
and we suggest they could be applied to other types of buno-
dont ungulates, including fossil suoids in South America and in 
other continents.
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