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Abstract
We investigate basic properties of mappings of finite distortion f : X → R

2, where
X is any metric surface, i.e., metric space homeomorphic to a planar domain with
locally finite 2-dimensional Hausdorff measure. We introduce lower gradients, which
complement the upper gradients of Heinonen and Koskela, to study the distortion of
non-homeomorphic maps on metric spaces. We extend the Iwaniec-Šverák theorem
to metric surfaces: a non-constant f : X → R

2 with locally square integrable upper
gradient and locally integrable distortion is continuous, open and discrete. We also
extend the Hencl-Koskela theorem by showing that if f is moreover injective then
f −1 is a Sobolev map.

Mathematics Subject Classification Primary 30L10 · 30C65; Secondary 30F10

1 Introduction

1.1 Background

Let � ⊂ R
2 be a domain. We say that map f : � → R

2 in the Sobolev space
W 1,2

loc (�,R2) has finite distortion if there is a measurable function K : � → [1,∞)

so that

||Df (x)||2 ≤ K (x)J f (x) for a.e. x ∈ �. (1.1)
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Here ||Df (x)|| and J f (x) are the operator norm and determinant of Df (x),
respectively.

If K (x) = 1 for almost every x ∈ �, then (1.1) is valid if and only if f is
complex analytic. The basic topological properties of non-constant analytic functions
are continuity, openness and discreteness (the preimage of every point is discrete in
�).

By Stoïlow factorization (see [1, Chapter 5.5], [27]) non-constant quasiregular
maps, i.e., maps f satisfying (1.1) with constant function K (x) = K ≥ 1, admit
a factorization f = g ◦ h, where h is a quasiconformal homeomorphism and g is
analytic. In particular, every such f is also continuous, open and discrete.

In [22] Iwaniec and Šverák showed that boundedness of K (x) may be replaced
with local integrability.

Theorem 1.1 (Iwaniec-Šverák theorem) Suppose f ∈ W 1,2
loc (�,R2) is non-constant

and satisfies (1.1) for some locally integrable K (x). Then f is continuous, open and
discrete.

The assumption on K (x) is essentially best possible (see [2] and [17]). Since the
work of Iwaniec and Šverák [22], a rich theory of mappings of finite distortion has
been developed (see [1, 12]), with applications to PDE, complex dynamics, inverse
problems and non-linear elasticity theory, among other fields.

The theory extends toW 1,1
loc -maps with exponentially integrable distortion and also

to higher dimensions, where continuity, openness and discreteness of quasiregular
mapswas proved byReshetnyak already in the 1960s (see [42]). Reshetnyak’s theorem
has been extended to spatial mappings of finite distortion by several authors (see [13,
20, 21, 25, 26, 37, 38, 45, 46]).

Partially motivated by works of Heinonen and Keith [16], Heinonen-Rickman [17]
and Heinonen–Sullivan [18], on BLD- and bi-Lipschitz parametrizations of metric
spaces, Kirsilä [24] furthermore extended Reshetnyak’s theorem to maps f : X →
R
n , where X is a generalized n-manifold satisfying assumptions such as Ahlfors

n-regularity and Poincaré inequality.
In this paper we extend the Iwaniec-Šverák theorem tomaps f : X → R

2, where X
is a metric surface, i.e., a metric space homeomorphic to a domain in R2 with locally
finite 2-dimensional Hausdorff measure. The novelty of our results is that we do not
impose any additional conditions on X .

Our research is partially inspired by recent advances on the uniformization problem
on metric surfaces (see [5, 20, 30, 34–36, 39]) and the properties of the associated
homeomorphisms, such as quasiconformal maps f : X → R

2. It is desirable to
explore the properties of non-homeomorphic maps on metric surfaces. The aim of our
paper is to provide the first results in this direction.

1.2 Mappings of finite distortion onmetric surfaces

A (euclidean) metric surface X is a metric space homeomorphic to a domainU ⊂ R
2

and with locally finite 2-dimensional Hausdorff measure. Below, H2 will always be
the reference measure on X .
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Mappings of finite distortion…

Let X and Y be metric surfaces. We want to establish what it means for a map
f : X → Y to have finite distortion. We first observe that in the euclidean case every
mapping of finite distortion is sense-preserving. This follows from inequality (1.1)
by applying non-negativity of the Jacobian determinant and integration by parts, a
method which is not available in our generality. We call f : X → Y sense-preserving
if for any domain � compactly contained in X so that f |∂� is continuous it follows
that deg(y, f ,�) ≥ 1 for any y ∈ f (�)\ f (∂�). Here deg is the local topological
degree of f , see [40, I.4] for a definition in the euclidean setting and note that the
concept transfers to our setting as every metric surface is homeomorphic to a domain
in R2.

We apply the theory of Sobolev spaces based on upper gradients ([13]). A Borel
function ρu : X → [0,∞] is an upper gradient of f : X → Y , if

dY ( f (x), f (y)) ≤
∫

γ

ρu ds (1.2)

for all x, y ∈ X and every rectifiable curve γ in X joining x and y. We say that f
belongs to the Sobolev space N 1,2

loc (X ,Y ) if f has an upper gradient ρu ∈ L2
loc(X)

and if dY (y, f (·)) ∈ L2
loc(X) for some y ∈ Y (see Sect. 2.3).

It follows from the proof of [11, Theorem 1.4] that a sense-preserving map f ∈
N 1,2
loc (X ,R2) is continuous (seeRemark2.3). Such an f also satisfiesLusin’sCondition

(N ): if E ⊂ X and H2(E) = 0, then | f (E)|2 = 0 (see Remark 2.8). The converse
implication does not hold ([39, Section 17]).

In order to define the distortion of f , we introduce lower gradients: a Borel func-
tion ρl : X → [0,∞] is a lower gradient of f ∈ N 1,2

loc (X ,Y ), if ρl ≤ ρu
f almost

everywhere and

�( f ◦ γ ) ≥
∫

γ

ρl ds (1.3)

for every rectifiable curve γ in X with f ◦ γ being continuous. Our definition is
motivated by the observation that the upper gradient inequality (1.2) is equivalent to
the reverse inequality of (1.3) for ρu (see Sect. 2.3). Every f ∈ N 1,2

loc (X ,Y ) has an
essentially uniqueminimal weak upper gradient ρu

f (see Sect. 2.3). Similarly, we prove
in Sect. 7 that every such f has an essentially unique maximal weak lower gradient
ρl
f .

We say that a sense-preserving f ∈ N 1,2
loc (X ,Y ) has finite distortion (along paths)

and denote f ∈ FDP(X ,Y ), if there is a measurable K : X → [1,∞) such that

ρu
f (x) ≤ K (x) · ρl

f (x) for almost every x ∈ X . (1.4)

The distortion K f of f is

K f (x) :=
⎧⎨
⎩

ρu
f (x)

ρl
f (x)

, if ρl
f (x) 	= 0,

1, if ρl
f (x) = 0.
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Our main result is the following extension of the Iwaniec-Šverák theorem. Here X
is any metric surface.

Theorem 1.2 Let f ∈ FDP(X ,R2) be non-constant with K f ∈ L1
loc(X). Then f is

open and discrete.

Generalizing the euclidean result byHencl-Koskela (who assumedW 1,1-regularity,
see [16]), we show that if f is furthermore a homeomorphism, then the inverse is also
a Sobolev map. For a related result see [4].

Theorem 1.3 Let f ∈ FDP(X ,R2) be injective with K f ∈ L1
loc(X). Then f −1 ∈

N 1,2
loc ( f (X), X).

Examples in [2] ( f0 in Proposition 6.1 below, see also [17]) and [16, Example 1.4],
respectively, show that condition K f ∈ L1

loc(X) is sharp both in Theorem 1.2 and in
Theorem 1.3, even if X = R

2.
We show in Sect. 6 that there are metric surfaces X which do not admit any qua-

siconformal maps h : X → R
2 but do admit maps f : X → R

2 satisfying the
assumptions of Theorem 1.2. By [33, Theorem 1.3], such surfaces do not exist if we
require K f to be bounded instead of integrable.

Previous approaches to distortion of maps between metric spaces are mostly based
on the analytic definition: We say that a sense-preserving f ∈ N 1,2

loc (X ,Y ) has finite
analytic distortion and denote f ∈ FDA(X ,Y ), if there is a measurable C : X →
[1,∞) such that

ρu
f (x)

2 ≤ C(x) · J f (x) for almost every x ∈ X , (1.5)

where

J f (x) = lim sup
r→0

H2
Y ( f (B(x, r)))

πr2
.

Inequality (1.5) is equivalent to (1.4) in the euclidean setting, and also provides a rich
theory for homeomorphisms between metric spaces. However, unlike our approach
based on lower gradients, the analytic approach is not convenient for treating non-
homeomorphic maps between metric surfaces. We nevertheless prove the following
in [33].

Theorem 1.4 ([33, Theorem 1.1]) If f ∈ FDA(X ,R2), then f ∈ FDP(X ,R2).
Moreover, for every C(x) in (1.5) we have

K f (x) ≤ 4
√
2C(x) for almost every x ∈ X .

Theorem 1.2 can be applied to prove the converse of Theorem 1.4 assuming K f ∈
L1
loc(X ,R2), see [33]. Combining Theorems 1.2, 1.3 and 1.4 shows that our main

results hold under the analytic assumption.
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Corollary 1.5 Let f ∈ FDA(X ,R2) be non-constant with C(x) ∈ L1
loc(X). Then f is

open and discrete. If f is injective, then f −1 ∈ N 1,2
loc ( f (X), X).

The definition of ametric surface can be relaxed by requiring X to be homeomorphic
to an oriented topological surface M instead of a domain in R

2. Our definitions and
results are local and remain valid under the relaxed definition. We state them only for
euclidean metric surfaces to simplify the presentation.

This paper is organized as follows. In Sect. 2 we recall the background on Analysis
inmetric spaces needed to prove ourmain results. In Sect. 3we prove an area inequality
for maps on the rectifiable part of a metric surface which involves lower gradients and
may be of independent interest. We prove Theorems 1.2 and 1.3 in Sects. 4 and 5,
respectively.

The proofs are based on threemain tools: the coarea inequality for Sobolev functions
on metric surfaces by Meier- Ntalampekos [32] and Esmayli- Ikonen- Rajala [11],
weakly quasiconformal parametrizations of metric surfaces by Ntalampekos- Romney
[35, 36] andMeier- Wenger [34], and the area inequality proved in Sect. 3. In addition,
to prove Theorem 1.2 we apply estimates inspired by the value distribution theory of
quasiregular mappings (see [40]).

In Sect. 6, we discuss connections between our results and the uniformization prob-
lem on metric surfaces, as well as different definitions of mappings with controlled
distortion. Finally, in Sect. 7 we prove the existence of maximal weak lower gradients.

2 Preliminaries

2.1 Basic definitions and notations

Let (X , d) be a metric space. We denote the open and closed ball in X of radius r > 0
centered at a point x ∈ X by B(x, r) and B(x, r), respectively. When X = R

2 we use
notation D(x, r) instead of B(x, r).

A set � ⊂ X homeomorphic to the unit disc D(0, 1) is a Jordan domain in X if its
boundary ∂� ⊂ X is a Jordan curve in X , i.e., a subset of X homeomorphic to S

1.
The image of a curve γ in X is indicated by |γ | and the length by �(γ ).

A curve γ is rectifiable if �(γ ) < ∞ and locally rectifiable if each of its compact
subcurves is rectifiable. Moreover, a curve γ : [a, b] → X is geodesic if �(γ ) =
d(γ (a), γ (b)). A curve γ : [0, �(γ )] → X is parametrized by arclength if �(γ |I ) =
|I |1 for every interval I ⊂ [0, �(γ )]. Here, | · |n denotes the n-dimensional Lebesgue
measure.

For s ≥ 0, we denote the s-dimensional Hausdorff measure of A ⊂ X by Hs(A).
The normalizing constant is chosen so that |V |n = Hn(V ) for open subsets V of Rn .

We equip X withH2. Let L p(X) (L p
loc(X)) denote the space of p-integrable (locally

p-integrable) Borel functions from X to R ∪ {−∞,∞}. Here locally p-integrable
means p-integrable on compact subsets.We say that a subdomainG of X is compactly
contained in X if the closure G is compact.
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2.2 Modulus

Let X be a metric space and � be a family of curves in X . A Borel function g : X →
[0,∞] is admissible for � if

∫
γ
g ds ≥ 1 for all locally rectifiable curves γ ∈ �. We

define the (2-)modulus of � as

Mod� = inf
g

∫
X
g2 dH2,

where the infimum is taken over all admissible functions g for �. If there are no
admissible functions for � we set Mod� = ∞. A property is said to hold for almost
every curve in � if it holds for every curve in � \ �0 for some family �0 ⊂ � with
Mod(�0) = 0. In the definition of Mod(�), the infimum can equivalently be taken
over all weakly admissible functions, i.e., Borel functions g : X → [0,∞] such that∫
γ
g ≥ 1 for almost every locally rectifiable curve γ ∈ �.

2.3 Metric Sobolev spaces

Let f : X → Y be a map between metric spaces. A Borel function ρu : X → [0,∞]
is an upper gradient of f if

dY ( f (x), f (y)) ≤
∫

γ

ρu ds (2.1)

for all x, y ∈ X and every rectifiable curve γ in X joining x and y. If the upper
gradient inequality (2.1) holds for almost every rectifiable curve γ in X joining x and
y we call ρu weak upper gradient of f .

The Sobolev space N 1,2(X ,Y ) is the space of Borel maps f : X → Y with upper
gradient ρu ∈ L2(X) such that x �→ dY (y, f (x)) is in L2(X) for some and thus any
y ∈ Y . The space N 1,2

loc (X ,Y ) is defined in the obvious manner.

Each f ∈ N 1,2
loc (X ,Y ) has a minimal weak upper gradient ρu

f , i.e., for any other
weak upper gradient ρu we have ρu

f ≤ ρu almost everywhere. Moreover, ρu
f is unique

up to a set of measure zero. See monograph [13] for more background on metric
Sobolev spaces.

We apply a notion of “minimal stretching” which compliments the “maximal
stretching” represented by upper gradients. To motivate the definition, notice that
for continuous maps f ∈ N 1,2

loc (X ,Y ) the upper gradient inequality (2.1) is equivalent
to

�( f ◦ γ ) ≤
∫

γ

ρu ds

for almost every rectifiable curve γ in X . We call a Borel function ρl : X → [0,∞]
a lower gradient of f ∈ N 1,2

loc (X ,Y ), if ρl ≤ ρu
f almost everywhere and
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�( f ◦ γ ) ≥
∫

γ

ρl ds (2.2)

for every rectifiable curve γ in X with f ◦ γ being continuous. If the lower gradient
inequality (2.2) holds for almost every rectifiable γ , we call ρl weak lower gradient
of f . Note that 0 is always a lower gradient.

Each f ∈ N 1,2
loc (X ,Y ) has a maximal weak lower gradient ρl

f , i.e., for any other

weak lower gradient ρl we have ρl
f ≥ ρl almost everywhere. Moreover, ρl

f is unique
up to a set of measure zero. The proof is analogous to the existence of minimal weak
upper gradients, see [13, Theorem 6.3.20]. For completeness, we provide a proof in
Sect. 7.

2.4 Coarea inequality onmetric surfaces

We state the following coarea inequality for Lipschitz functions, which is a conse-
quence of [10, Theorem 1.1] (see [11, Section 5]). Here, Lip(u) denotes the pointwise
Lipschitz constant of a Lipschitz function u : X → R, defined by

Lip(u)(x) = lim sup
x 	=y→x

|u(y) − u(x)|
d(x, y)

.

Theorem 2.1 (Lipschitz coarea inequality) Let X be a metric space and u : X → R a
Lipschitz function. Then

∗∫

R

∫
u−1(t)

g dH1dt ≤ 4

π

∫
X
g · Lip(u) dH2

for every Borel measurable g : X → [0,∞].
Here

∫ ∗ denotes the upper integral, which is equal to Lebesgue integral for measur-
able functions. An important tool throughout this work will be the following coarea
inequality for continuous Sobolev functions on metric surfaces.

Theorem 2.2 (Sobolev coarea inequality, [32, Theorem 1.6]) Let X be ametric surface
and v : X → R be a continuous function in N 1,2

loc (X).

(1) IfAv denotes the union of all non-degenerate components of the level sets v−1(t),
t ∈ R, of v, then Av is a Borel set.

(2) For every Borel function g : X → [0,∞] we have
∗∫ ∫

v−1(t)∩Av

g dH1 dt ≤ 4

π

∫
g · ρu

v dH2.
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Theorem 2.2 generalizes the coarea inequality for monotone Sobolev functions
established in [11]. Here v : X → R is called a weakly monotone function if for every
open � compactly contained in X

sup
�

v ≤ sup
∂�

v < ∞ and inf
�

v ≥ inf
∂�

v > −∞.

A continuous weakly monotone function is monotone.

Remark 2.3 In the proof of [11, Theorem 1.4] the coarea inequality for mono-
tone Sobolev functions is used to show that every weakly monotone function v ∈
N 1,2
loc (X ,R) is continuous and hence monotone. Continuity of a sense-preserving map

f ∈ N 1,2
loc (X ,R2) now follows by applying the exact same proof strategy while replac-

ingweakmonotonicitywith sense-preservation and the coarea inequality formonotone
Sobolev maps with Theorem 2.2.

2.5 Metric differentiability

Let (Y , d) be a complete metric space and U ⊂ R
n , n ≥ 1, a domain. We say

that h : U → Y is approximately metrically differentiable at z ∈ U if there exists a
seminorm Nz on R2 for which

ap lim
y→z

d(h(y), h(z)) − Nz(y − z)

|y − z| = 0.

Here, ap lim denotes the approximate limit (see [8, Section 1.7.2]). If such a seminorm
exists, it is unique and is called approximate metric derivative of h at z, denoted
apmd hz . The following result follows from [29, Lemma 3.1].

Lemma 2.4 Let X and Y be metric surfaces and f ∈ N 1,2
loc (X ,Y ). Almost every curve

γ : [a, b] → X parametrized by arclength satisfies

∫
f ◦γ

g ds =
∫ b

a
g( f (γ (t))) · apmd( f ◦ γ )t dt

for all Borel measurable g : Y → [0,∞].
Lemma 2.4 leads to the following properties of upper and lower gradients (see [13,

Proposition 6.3.3] for a proof involving upper gradients).

Corollary 2.5 Let X and Y be metric surfaces and f ∈ N 1,2
loc (X ,Y ). Almost every

curve γ : [a, b] → X parametrized by arclength satisfies the following properties.

(1) f is absolutely continuous on γ ,
(2) ρl

f (γ (t)) ≤ apmd( f ◦ γ )t ≤ ρu
f (γ (t)) for almost every a < t < b,

(3) if g : Y → [0,∞] is Borel measurable, then
∫

γ

ρl
f · (g ◦ f ) ds ≤

∫
f ◦γ

g ds ≤
∫

γ

ρu
f · (g ◦ f ) ds.
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2.6 Area formula on euclidean domains

Suppose U ⊂ R
2 is a domain and h ∈ N 1,2

loc (U ,Y ). Then U can be covered up to
a set of measure zero by countably many disjoint measurable sets G j , j ∈ N, such
that h|G j is Lipschitz. In particular, outside a set of measure zero G0 ⊂ U , h satisfies
Lusin’s condition (N) (see [13, Theorem 8.1.49]).

By [28, Proposition 4.3], every h ∈ N 1,2
loc (U ,Y ) is approximately metrically differ-

entiable at a.e. z ∈ U . The following area formula follows from [23, Theorem 3.2].
Here, the Jacobian J (Nz) of a seminorm Nz on R

2 is zero if Nz is not a norm and
J (Nz) = π/|{y ∈ R

2 : Nz(y) ≤ 1}|2 otherwise.
Theorem 2.6 (Area formula) If h ∈ N 1,2

loc (U ,Y ), then there exists G0 ⊂ U with
H2(G0) = 0 such that for every measurable set A ⊂ U \ G0 we have

∫
A
J (apmd hz) dH2 =

∫
Y
N (y, h, A) dH2. (2.3)

Here, N (y, h, A) denotes the multiplicity of y ∈ Y with respect to h in A:

N (y, h, A) := #{z ∈ A : h(z) = y}. (2.4)

2.7 Weakly quasiconformal parametrizations

A map h : X → Y between metric surfaces is cell-like if the preimage of each point
is a continuum that is contractible in each of its open neighborhoods. A continuous,
surjective, proper and cell-like map h : X → Y is weakly C-quasiconformal if

Mod� ≤ C Mod h(�)

holds for every family of curves � in X . It follows from [47, Theorem 1.1] that every
weakly quasiconformal map h : X → Y is contained in N 1,2

loc (X ,Y ).
It was shown in [35] that any metric surface admits a weakly quasiconformal

parametrization, see also [30, 34, 36].

Theorem 2.7 ([35, Theorem 1.2]) Let X be any metric surface. There is a weakly
(4/π)-quasiconformal u : U → X, where U ⊂ R

2 is a domain.

Remark 2.8 Condition (N) for sense-preserving maps f ∈ N 1,2
loc (X ,R2) can be proved

using the area formula and Theorem 2.7 as follows: suppose E ⊂ X andH2(E) = 0,
and letu : U → X be a (sense-preserving)weakly (4/π)-quasiconformal parametriza-
tion of X provided by Theorem 2.7. Define h : U → R

2 by h := f ◦ u. Then
u ∈ N 1,2

loc (U , X) and h ∈ N 1,2
loc (U ,R2), see [33, Theorem 2.5].

By Theorem 2.6 there exists G0 ⊂ U with |G0|2 = 0 and such that (2.3) holds
for u and h and every measurable set A ⊂ U \ G0. We set X0 := u(G0). Now h is
sense-preserving and thus monotone. Therefore, h satisfies Condition (N) by [31]. In
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particular, with the above notation,

| f (E)|2 ≤
∫
u−1(E)

J (apmd hz) dz.

On the other hand, applying Theorem 2.6 to u shows that

∫
u−1(E)

J (apmd uz) dz ≤ H2(E) = 0,

and so J (apmd uz) = 0 almost everywhere in u−1(E). Since u is weakly quasi-
conformal, it moreover follows that apmd uz = 0. Then, by Lemmas 2.9 and 2.10
below, J (apmd hz) = 0 almost everywhere in u−1(E) as well. We conclude that
| f (E)|2 = 0.

2.8 Distortion of Sobolevmaps

Let U ⊂ R
2 be a domain. We define the maximal and minimal stretches of h ∈

N 1,2
loc (U ,Y ) at points of approximate differentiability by

Lh(z) = max{apmd hz(v) : |v| = 1}, lh(z) = min{apmd hz(v) : |v| = 1}.

Recall that maps h ∈ N 1,2
loc (U ,Y ) are approximately differentiable almost everywhere.

Lemma 2.9 Let h ∈ N 1,2
loc (U ,Y ). Then Lh and lh are representatives of the mini-

mal weak upper gradient and the maximal weak lower gradient of h, respectively.
Moreover,

2−1Lh(z)lh(z) ≤ J (apmd hz) ≤ 2Lh(z)lh(z) (2.5)

at points of approximate differentiability.

Proof The first claim concerning upper gradients is [32, Lemma 2.14]. A slight
modification of the proof gives the claim concerning lower gradients.

Towards (2.5), we may assume that apmd hz is a norm. Then the unit ball Bz of
apmd hz(v) contains a unique ellipse of maximal area Ez , called the John ellipse of
Bz , which satisfies

Ez ⊂ Bz ⊂ √
2Ez, (2.6)

see [3, Theorem 3.1]. Let Nz be the norm whose unit ball is Ez , and

Mz = max{Nz(v) : |v| = 1}, mz = min{Nz(v) : |v| = 1}.

Then J (Nz) = π/|Ez |2 = Mzmz , and (2.6) gives

Lh(z)lh(z) ≤ Mzmz = J (Nz) = 2π/|√2Ez |2 ≤ 2π/|Bz |2 = 2J (apmd hz).
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On the other hand, (2.6) also gives

J (apmd hz) ≤ J (Nz) = Mzmz ≤ 2Lh(z)lh(z).

The proof is complete. ��
We will apply distortion estimates on composed mappings.

Lemma 2.10 Let X and Y be metric surfaces and U ⊂ R
2 a domain, u : U → X

weakly quasiconformal, and f ∈ N 1,2
loc (X ,Y ). Then

l f ◦u(z) ≥ ρl
f (u(z)) · lu(z) and L f ◦u(z) ≤ ρu

f (u(z)) · Lu(z)

for almost every z ∈ U.

Proof Let�0 be the family of paths γ inU so that lu does not satisfy the lower gradient
inequality (2.2) for u on some subcurve of γ or ρl

f does not satisfy the lower gradient
inequality for f on some subcurve of u ◦ γ . Then, since u is weakly quasiconformal
and lu , ρl

f are weak lower gradients (Lemma 2.9), we conclude that Mod(�0) = 0.
Applying Corollary 2.5, we have

�( f ◦ u ◦ γ ) ≥
∫
u◦γ

ρl
f ds ≥

∫
γ

(ρl
f ◦ u) · lu ds

for every γ /∈ �0 parametrized by arclength. We conclude that (ρl
f ◦ u) · lu is a weak

lower gradient of f ◦u. But l f ◦u is a maximal weak lower gradient of f ◦u by Lemma
2.9. The first inequality follows. The second inequality is proved in a similar way. ��

3 Area inequality onMetric surfaces

Let X and Y be metric surfaces. In this section we establish Theorem 3.1, an area
inequality for Sobolev maps in N 1,2

loc (X ,Y ) on measurable subsets of the rectifiable
part of X . We apply Theorem 3.1 in Sects. 4 and 5 below to prove our main results,
Theorems 1.2 and 1.3.

As in Remark 2.8, let u : U → X be a weakly (4/π)-quasiconformal parametriza-
tion of X provided by Theorem 2.7, and h : U → Y , h := f ◦u. Then u ∈ N 1,2

loc (U , X)

and h ∈ N 1,2
loc (U ,Y ). By Theorem 2.6, there exists G0 ⊂ U with |G0|2 = 0 and such

that (2.3) holds for both u and h and every measurable set A ⊂ U \ G0. We set
X0 := u(G0).

Theorem 3.1 (Area inequality) If g : Y → [0,∞] and E ⊂ X\X0 are Borel
measurable, then

∫
E
g( f (x)) · ρu

f (x)ρ
l
f (x) dH2 ≤ 4

√
2

∫
Y
g(y) · N (y, f , E) dy.
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If in addition, the map f satisfies Lusin’s condition (N), then

∫
E
g( f (x)) · ρu

f (x)ρ
l
f (x) dH2 ≥ 1

4
√
2

∫
Y
g(y) · N (y, f , E) dy.

In order to establish Theorem 3.1, we make use of the following proposition which
can be seen as a counterpart to Lemma 2.10.

Proposition 3.2 Let f , u and h = f ◦ u be as above. Then

ρu
f (u(z)) · lu(z) ≤ Lh(z) and lh(z) ≤ ρl

f (u(z)) · Lu(z) (3.1)

for almost every z ∈ U \ G0.

Proof Fix Borel representatives of the maps z �→ apmd uz and z �→ apmd hz .
Towards the first inequality in (3.1), we denote

G ′
0 = G0 ∪ {z ∈ U : lu(z) = 0},

and notice that it suffices to prove the inequality for almost every z ∈ U \G ′
0. By [28,

Proposition 4.3], there are pairwise disjoint Borel sets Ki ⊂ U\G ′
0, i ∈ N, so that

|U \ (G ′
0 ∪ (∪i Ki ))|2 = 0 (3.2)

and so that for every i ∈ N we have

(i) apmd uz and apmd hz exist for every z ∈ Ki and
(ii) for every ε > 0 there is ri (ε) > 0 so that

|dX (u(z + v), u(z + w)) − apmd uz(v − w)| ≤ ε|v − w| and

|dY (h(z + v), h(z + w)) − apmd hz(v − w)| ≤ ε|v − w|

for every z ∈ Ki and all v,w ∈ R
2 with |v|, |w| ≤ ri (ε) and such that z+v, z+w ∈

Ki .

Wewill show that if i ∈ N then almost every curve γ in X parametrized by arclength
has the following property: almost every t ∈ γ −1(u(Ki )) satisfies

apmd( f ◦ γ )t ≤ Lh(z)

lu(z)
for all z ∈ u−1(γ (t)) ∩ Ki . (3.3)

We show how to conclude the first inequality in (3.1) from (3.3). By Lemma 2.4,
Corollary 2.5 and (3.3), ρ : X → [0,∞] is a weak upper gradient of f , where ρ(x) =
ρu
f (x) for x ∈ X \ u(Ki ) and

ρ(x) = inf
z∈Ki , u(z)=x

Lh(z)

lu(z)
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when x ∈ u(Ki ). By the definition of minimal weak upper gradients, we then have
that

ρu
f (x) ≤ ρ(x) for almost every x ∈ u(Ki ). (3.4)

Since Ki ⊂ U \ G ′
0, we have lu > 0 and thus J (apmd uz) > 0 in Ki . Combining

(3.4) with the Area formula (Theorem 2.6) for u now yields

ρu
f (u(z)) · lu(z) ≤ Lh(z)

for almost every z ∈ Ki . The first inequality in (3.1) follows from (3.2).
Wenowprove (3.3).Denote by X̂ ⊂ X the set of points x forwhich N (x, u,U ) = 1.

By [36, Remark 7.2], H2(X \ X̂) = 0. In particular, almost every rectifiable curve
γ : [0, �(γ )] → X parametrized by arclength satisfies γ (t) ∈ X̂ forH1-almost every
0 < t < �(γ ).

We fix such a γ and a density point t0 ∈ γ −1(u(Ki ) ∩ X̂) =: T of T . By Corollary
2.5, we may moreover assume that f ◦ γ is approximately metrically differentiable at
t0. It suffices to show that (3.3) holds for t0 and the unique z0 = u−1(γ (t0)) ∈ Ki .

Fix a sequence (t j ) of points in T converging to t . Then x j := γ (t j ) → γ (t0) =: x0.
Moreover, since x0 ∈ X̂ , we have z j := u−1(x j ) → z0. We are now in position to
apply Property (ii) above. Denoting y j = f (x j ) for j = 0, 1, . . ., (ii) and triangle
inequality yield

dX (x j , x0)

|z j − z0| ≥ apmd uz0
( z j − z0
|z j − z0|

)
− o(|z j − z0|) ≥ lu(z0) − o(|z j − z0|),

dY (y j , y0)

|z j − z0| ≤ apmd hz0
( z j − z0
|z j − z0|

)
+ o(|z j − z0|) ≤ Lh(z0) + o(|z j − z0|).

Combining the inequalities, we have

dY (y j , y0)

dX (x j , x0)
= dY (y j , y0) · |z j − z0|

|z j − z0| · dX (x j , x0)
≤ Lh(z0)

lu(z0)
+ o(|z j − z0|). (3.5)

Since γ is parametrized by arclength, (3.5) gives (3.3). The first inequality in (3.1)
follows. The second inequality follows in a similar way, namely showing that instead
of (3.3) we have

apmd( f ◦ γ )t ≥ lh(z)

Lu(z)

outside suitable exceptional sets. We leave the details to the reader. ��

Proof of Theorem 3.1 We may approximate g with simple functions and replace E
with appropriate subsets to see that it suffices to show the claim for g ≡ 1. We set
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E ′ = E ∩ X̂ , where X̂ is as in the proof of Proposition 3.2, and obtain

N (y, h, u−1(E ′)) =
∑

x∈ f −1(y)

N (x, u, u−1(E ′)) = N (y, f , E ′) (3.6)

for every y ∈ f (E ′).
The area formula (Theorem 2.6) implies

∫
E

ρu
f (x)ρ

l
f (x) dH2 =

∫
E ′

ρu
f (x)ρ

l
f (x)N (x, u, u−1(E ′)) dH2

=
∫
u−1(E ′)

ρu
f (u(z))ρl

f (u(z))J (apmd uz) dz.

ByLemma 2.9, J (apmd uz) ≤ 2Lu(z)·lu(z) for almost every z ∈ u−1(E ′).Moreover,
it follows from the proof of Theorem 2.7 given in [35] that we can choose u so that
the John ellipse of apmd uz (see (2.6)) is a disk. Then Lu(z) ≤ √

2lu(z), which leads
to

J (apmd uz) ≤ 2Lu(z) · lu(z) ≤ 2
√
2 · lu(z)2 for almost every z ∈ u−1(E ′).

Combining with Lemma 2.10 and Proposition 3.2, we conclude that

∫
E

ρu
f (x)ρ

l
f (x) dH2 ≤ 2

√
2

∫
u−1(E ′)

Lh(z)lh(z) dz.

Applying Lemma 2.9 and the area formula (Theorem 2.6) to h, we finally obtain

∫
E

ρu
f (x)ρ

l
f (x) dH2 ≤ 4

√
2

∫
u−1(E ′)

J (apmd hz) dz

= 4
√
2

∫
f (E ′)

N (y, h, u−1(E ′)) dy.

The theorem follows by combining with (3.6).
For the second statement we note that f satisfying Lusin’s condition (N) implies

H2( f (E \ E ′)) = 0 as, by [36, Remark 7.2], H2(E \ E ′) = 0. The rest of the proof
is analogous to the arguments above. ��

4 Openness and discreteness

Throughout this section let f be as in Theorem 1.2, i.e., f ∈ N 1,2
loc (X ,R2) is non-

constant, sense-preserving and satisfies K f ∈ L1
loc(X). Recall that f is continuous by

Remark 2.3.
A map f : X → R

2 is light if f −1(y) is totally disconnected for every y ∈ R
2.

It is well-known that if f is continuous, sense-preserving and light, then f is open
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and discrete [43], [40, Lemma VI.5.6]. Thus, in order to prove Theorem 1.2 it suffices
to show that f is in fact light. The proof of this fact relies on the following two
propositions involving estimates on the multiplicity of f (recall notation N (y, h, A)

for multiplicity in (2.4)).

Proposition 4.1 Suppose that there are s, r0 > 0 and C > 0 such that

∫ 2π

0
N ( f (x0) + reiθ , f , B(x0, s)) dθ ≤ C log

1

r
(4.1)

for all r < r0. Then the x0-component of f −1( f (x0)) either is {x0} or contains an
open neighborhood of x0.

Recall that X is homeomorphic to a planar domain. In particular, for every x0 ∈ X
there is s > 0 so that B(x0, 2s) is a compact subset of X .

Proposition 4.2 Let x0 ∈ X and s > 0 so that B(x0, 2s) ⊂ X is compact. Then
Condition (4.1) holds with some r0,C > 0.

Theorem1.2 follows by combining Propositions 4.1 and 4.2: since f is not constant,
for every y0 ∈ f (X) every component F of f −1(y0) contains a point x0 ∈ X which
is a boundary point of F . Combining Propositions 4.1 and 4.2, we see that F = {x0}.
We conclude that f is light and therefore open and discrete.

4.1 Proof of Proposition 4.1

Let f : X → R
2 be a map of finite distortion and � a curve family in X . We define

the weighted modulus

ModK−1 � = inf
g

∫
X

g(x)2

K f (x)
dH2,

where the infimum is taken over all weakly admissible functions g for �.
Let u : U → X be a weakly (4/π)-quasiconformal parametrization of X as in

Theorem 2.7. Let G0 ⊂ U and X0 = u(G0) ⊂ X be as in the paragraph preceding
Theorem 3.1. Recall that |G0|2 = 0. We set X ′ := X \ X0.

Lemma 4.3 Let �′ be a family of curves in � ⊂ X with H1(|γ | ∩ X0) = 0 for every
γ ∈ �′. Then

ModK−1 �′ ≤ 4
√
2

∫
R2

g(y)2N (y, f ,�) dy,

whenever g is admissible for � = f (�′).

Proof Fix an admissible g for �, and let g′ : X → R,

g′(x) := g( f (x)) · ρu
f (x) · χ�∩X ′(x).
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Here, χE denotes the indicator function on a set E ⊂ X , i.e., χE (x) = 1 if x ∈ E and
χE (x) = 0 else. For almost every γ ∈ �′ we have that f is absolutely continuous on
γ ,H1(|γ | ∩ X0) = 0, and

∫
γ

g′ ds =
∫

γ

(g ◦ f ) · ρu
f ds ≥

∫
f ◦γ

g ds,

see Corollary 2.5. Since g is admissible for � = f (�′), it follows that g′ is weakly
admissible for �′. Moreover,

ModK−1 �′ ≤
∫
X

g′(x)2

K f (x)
dH2 =

∫
�∩X ′

g( f (x))2 · ρu
f (x)ρ

l
f (x) dH2

≤ 4
√
2

∫
R2

g(y)2 · N (y, f ,�) dy,

where the last inequality follows from the area inequality, Theorem 3.1. ��
Lemma 4.4 Let ϕ ∈ N 1,2

loc (X ,R), and consider E ⊂ R with |E |1 > 0 and so that each
level set ϕ−1(t), t ∈ E, contains a non-degenerate continuum ηt . ThenH1(ηt ∩X0) =
0 for almost every t ∈ E.

Proof Note that ϕ̂ = ϕ ◦ u is in N 1,2
loc (U ,R). For every t ∈ E , let η̂t = u−1(ηt ).

Then, since u is continuous and proper, η̂t is a non-degenerate continuum for every
t ∈ E . Moreover, the coarea inequality for Sobolev functions (Theorem 2.2) shows
that H1(η̂t ) < ∞ for almost every t ∈ E . For every such t , there is a surjective
two-to-one 1-Lipschitz curve

γ̂t : [0, 2H1(η̂t )] → η̂t ,

cf. [41, Proposition 5.1]. Let �̂ be the family of the curves γ̂t , and let g : U → [0,∞]
be admissible for �̂. We apply the coarea inequality for Sobolev functions (Theorem
2.2) and Hölder’s inequality to obtain

|E |1 ≤
∗∫

E

∫
γ̂t

g ds dt ≤ 2

∗∫

E

∫
η̂t

g dH1 dt ≤ 8

π

∫
ϕ̂−1(E)

g · ρu
ϕ̂ dH2

≤ 8

π

(∫
ϕ̂−1(E)

g2 dH2
)1/2 (∫

ϕ̂−1(E)

(ρu
ϕ̂ )2 dH2

)1/2

.

Since ρu
ϕ̂ ∈ L2

loc(U ) and |E |1 > 0 it follows that Mod(�̂) > 0. As a Sobolev function,
u is therefore absolutely continuous along γ̂t for almost every t ∈ E , see e.g. [13,
Lemma 6.3.1]. Moreover, for almost every t ∈ E we have that H1(η̂t ∩ G0) = 0,
since |G0|2 = 0. Combining these two facts shows that H1(ηt ∩ X0) = 0 for almost
every t ∈ E . ��
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Lemma 4.5 Let V ⊂ X be open and connected, and I , J ⊂ V disjoint non-trivial
continua. There are E ⊂ R, |E |1 > 0, and a family �′ = {γt : t ∈ E} satisfying
(1) every γt ∈ �′ is a non-degenerate curve connecting I and J in V ,
(2) there exists ϕ ∈ N 1,2

loc (V ,R) such that for every t ∈ E the curve γt ∈ �′ has image
in the level set ϕ−1(t), and

(3) ModK−1 �′ > 0.

Proof Replacing V with a compactly connected subdomain if necessary, we may
assume that

∫
V
K f (x) dH2(x) = K < ∞. (4.2)

Fix points a ∈ I and b ∈ J and a continuous curve η joining a and b in V . Define
ϕ : X → R by ϕ(x) = dist(x, |η|). As described in the proof of [39, Proposition 3.5],
we find ε′ > 0, a set E0 ⊂ (0, ε′)withH1(E0) = 0, and for every t ∈ E = (0, ε′)\E0
a rectifiable injective curve γt joining I and J in V , with image in the level set ϕ−1(t).
We set �′ = {γt : t ∈ E}.

Let g : V → [0,∞] be admissible for �′. We apply the coarea inequality for
Lipschitz maps (Theorem 2.1) and Hölder’s inequality to obtain

ε′ ≤
∫ ε′

0

∫
γt

g ds dt ≤ 4

π

∫
V
g(x)K f (x)

−1/2K f (x)
1/2 dH2(x)

≤ 4

π

(∫
V
K f (x) dH2(x)

)1/2 (∫
V

g(x)2

K f (x)
dH2(x)

)1/2

.

Combining with (4.2) gives

ModK−1 �′ ≥
(

πε′

4K

)2

> 0,

where we used that the estimate above holds for all admissible functions. ��
If Z is a metric surface, G ⊂ Z a domain, and E, F ⊂ G disjoint sets, we denote

by �(E, F;G) the family of curves joining E and F in G.

Lemma 4.6 For any ε > 0 the function gε : R2 → [0,∞) defined by

gε(y) = ε

(
|y| log 1

|y| log log
1

|y|
)−1

χD(0,e−2)

is admissible for �({0}, ∂D(0, e−2);R2) and

∫
R2

gε(y)
2 log

1

|y| dy → 0

as ε → 0.
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Proof Fix γ ∈ �({0}, ∂D(0, e−2);R2). We may assume that γ : [0, �(γ )] → R
2 is

parametrized by arclength and γ (0) = 0. Then �(γ ) ≥ e−2 and |γ (t)| ≤ t for every
0 ≤ t ≤ �(γ ). We compute

∫
γ

g1 ds =
∫ �(γ )

0
g1(γ (t)) dt

=
∫ �(γ )

0

(
|γ (t)| log 1

|γ (t)| log log
1

|γ (t)|
)−1

dt

≥
∫ e−2

0

(
t log

1

t
log log

1

t

)−1

dt = ∞,

where the last equality follows since

d

ds
log log log

1

s
= −

(
s log

1

s
log log

1

s

)−1

.

Thus, gε = ε · g1 is admissible for �({0}, ∂D(0, e−2);R2) for any ε > 0.
In order to prove the second claim we use polar coordinates and compute

∫
R2

gε(y)
2 log

1

|y| dy = ε2
∫
R2

(
|y|2 log 1

|y|
(
log log

1

|y|
)2

)−1

χD(0,e−2) dy

= ε2
∫ 2π

0

∫ e−2

0

(
r log

1

r

(
log log

1

r

)2
)−1

dr dϕ.

The last term converges to 0 as ε → 0 since

d

ds

(
log log

1

s

)−1

=
(
s log

1

s

(
log log

1

s

)2
)−1

.

The second claim follows. ��

We are now able to prove Proposition 4.1. Let V0 be the x0-component of
B(x0, s). Denote the x0-component of f −1( f (x0)) ∩ V0 by J . We may assume that
V0 \ f −1( f (x0)) 	= ∅, since otherwise there is nothing to prove. Towards contra-
diction, assume that J is a non-trivial continuum. Fix another non-trivial continuum
I ⊂ V0\ f −1( f (x0)).

By scaling and translating the target we may assume that f (x0) = 0, f (I ) ∩
D(0, e−2) = ∅, and that the constant r0 in Condition (4.1) satisfies r0 ≥ e−2. Let
�′ be the curve family from Lemma 4.5. Note that � = f (�′) is a subfamily of
�({0}, ∂D(0, e−2);R2). Hence, we know from Lemma 4.6 that for any ε > 0 the
function gε is admissible for �. Lemma 4.4 implies that Lemma 4.3 can be applied to
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our setting and thus

ModK−1 �′ ≤ 4
√
2

∫
R2

gε(y)
2N (y, f , B(x0, s)) dy.

Since gε is symmetric with respect to the origin, combining Assumption (4.1) with
polar coordinates yields

∫
R2

gε(y)
2N (y, f , B(x0, s)) dy =

∫ e−2

0
rgε(r)

2
∫ 2π

0
N (reiθ , f , B(x0, s)) dθ dr

≤ C
∫ e−2

0
rgε(r)

2 log
1

r
dr = C

∫
R2

gε(y)
2 log

1

|y| dy.

By the second part of Lemma 4.6, the right hand integral converges to 0 as ε goes
to 0. Thus, ModK−1 �′ = 0, contradicting Lemma 4.5. The proof is complete.

4.2 Proof of Proposition 4.2

Let x0 and s be as in the statement. We may assume that f (x0) = 0. We first show
that f −1(y) is totally disconnected for most points y ∈ f (X) around 0.

Lemma 4.7 Let β ′ be the set of those 0 ≤ θ < 2π for which there is Rθ > 0 so that
f −1(Rθeiθ ) contains a non-degenerate continuum. Then |β ′|1 = 0.

Proof We define

ϕ : X \ f −1(0) → S
1, ϕ(x) = f (x)

| f (x)| ,

and note that ρu
f /| f | is a weak upper gradient of ϕ. Towards a contradiction we assume

that |β ′|1 > 0. Then there are δ, ε > 0 and a set β ′
δ ⊂ β ′, |β ′

δ|1 > 0, such that for
every θ ∈ β ′

δ there exists Rθ ∈ [ε, 1] for which f −1(Rθeiθ ) contains a continuum Eθ

withH1(Eθ ) ≥ δ. As in the proof of Lemma 4.4, we see that almost every θ ∈ β ′
δ the

continuum Eθ is the image of a rectifiable curve γθ , and the modulus of the family
of such curves is positive. By the definition of lower gradients and since f ◦ γθ is
constant by construction, we then have that ρl

f = 0 almost everywhere in

E =
⋃
θ∈β ′

δ

Eθ .

Furthermore, since f has finite distortion, also ρu
f = 0 almost everywhere in E . Let

F = {x ∈ X : | f (x)| ≥ ε, ρu
f (x) = 0} ⊃ E .
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We apply the Sobolev coarea inequality (Theorem 2.2) to compute

0 < δ|β ′
δ|1 ≤

∗∫

β ′
δ

H1(Eθ ) dθ ≤ 4

π

∫
F

ρu
f

| f | dH
2 = 0,

a contradiction. The proof is complete. ��
Lemma 4.8 Let β ′ be the set in Lemma 4.7. There exists β ⊃ β ′ with |β|1 = 0, and
an open �′ ⊂ X, such that

(1) f |�′ is a local homeomorphism, and
(2) if V = {teiθ : t > 0, θ ∈ β}, then �′ ⊃ X \ f −1(V ).

Proof Set V ′ = {teiθ : θ ∈ β ′, t > 0}. Let y ∈ f (X)\V ′ and x ∈ f −1(y). Then, since
{x} is a component of f −1(y), there is a Jordan domain Ũx in X such that x ∈ Ũx and
y /∈ f (∂Ũx ). Let Wx be the y-component of R2\ f (∂Ũx ) and Ux the x-component of
f −1(Wx ). It follows that f (∂Ux ) ⊂ ∂Wx . Indeed, otherwise there is a point a ∈ ∂Ux

with f (a) ∈ Wx and therefore there exists a neighbourhood Y of f (a) in Wx , but the
a-component of f −1(Y ) is not contained in Ux , which is a contradiction.

The assumption that f is sense-preserving now implies f (∂Ux ) = ∂Wx . Using
basic degree theory, we conclude that f −1(z) has at most deg(y, f ,Ux ) components
in Ux for every z ∈ Wx . Furthermore, arguing as in the proof of Lemma 4.7 we see
that for almost every such z all of these components are points. In other words,

N (z, f ,Ux ) ≤ deg(y, f ,Ux ) < ∞

for almost every z ∈ Wx . In particular, every x ∈ Ux satisfies the conditions in
Proposition 4.1, and therefore f |Ux is open and discrete.

We have established the following.

(i) If y ∈ f (X)\V ′ and x ∈ f −1(y), then x has a neighbourhood Ux such that f |Ux

is open and discrete.

We define

�̂ = {x ∈ X : x-component of f −1( f (x)) is {x}}.

Note that if x ∈ �̂, then there exists a neighbourhood Y of f (x) such that the closure
of the x-component of f −1(Y ) is compact. As above, we find a neighbourhoodUx of
x such that f |Ux is open and discrete. In particular, �̂ is open. Moreover, it follows
from (i) that �̂ ⊃ X \ f −1(V ′). We have shown that

(ii) �̂ is open, f |�̂ is open and discrete, and �̂ ⊃ X \ f −1(V ′).

Denote by B f the branch set of f |�̂, i.e., the set of points where f |�̂ fails to be locally
invertible, and define

β ′′ = {0 ≤ θ < 2π : Reiθ ∈ f (B f ) for some R > 0}.
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Recall that B f is closed and countable, see [6, 7, 44], thus β ′′ is countable. It follows
from Lemma 4.7 and (ii) that the sets �′ = �̂ \ B f and β = β ′ ∪ β ′′ possess the
desired properties. ��
Lemma 4.9 Let m ∈ N, 0 < r < e−2, and assume that B(x0, 2s) is compact and
satisfies f (B(x0, 2 s)) ⊂ D(0, 1). If

Em = {0 ≤ θ < 2π : N (reiθ , f , B(x0, s)) = m},

then

m|Em |1 ≤ 64
√
2

πs2

∫
Fm

K f dH2 · log 1

r
,

where Fm = {x ∈ X : arg( f (x)) ∈ Em}.
Proof We assume |Em |1 > 0, otherwise there is nothing to show. Let β and �′ be as
in Lemma 4.8. We set E ′

m = Em \ β and note that |E ′
m |1 = |Em |1 since |β|1 = 0. We

also denote

F ′
m = {x ∈ X : arg( f (x)) ∈ E ′

m} ⊂ Fm .

Fix θ ∈ E ′
m , then

f −1({teiθ : t ≥ r}) ⊂ �′.

We can therefore apply path lifting of local homeomorphisms to curves Iθ = {teiθ :
r ≤ t ≤ 1} as follows: if {x1, ..., xm} = f −1(reiθ ) ∩ B(x, s) then for every j ∈
{1, ...,m} there exists a maximal lift γ j

θ of Iθ starting at x j , see [40, Theorem II.3.2].
Note that if ϕ : X → [0, 2π) is defined by ϕ(x) = arg( f (x)), then the image of each
γ

j
θ is contained in the level set ϕ−1(θ).

Since B(x, 2s) is compact and f (B(x, 2 s)) ⊂ D(0, 1), every curve γ
j

θ connects

B(x, s) and X\B(x, 2 s), and soH1(|γ j
θ |) ≥ s.Moreover, f ||γ j

θ | is injective. It follows
that

s · m ≤
m∑
j=1

H1(|γ j
θ |) ≤ H1({x ∈ X : arg( f (x)) = θ}) (4.3)

for every θ ∈ E ′
m .

We combine (4.3) with the Sobolev coarea inequality (Theorem 2.2) and Hölder’s
inequality to compute

s · m · |Em |1 = s · m · |E ′
m |1

≤
∫
E ′
m

H1({x ∈ X : arg( f (x)) = θ}) dθ
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≤ 4

π

∫
Fm

ρu
f

| f | dH
2 ≤ 4

π

∫
Fm

K 1/2
f · (ρu

f · ρl
f )

1/2

| f | dH2

≤ 4

π

(∫
Fm

K f dH2
)1/2 ( ∫

F ′
m

ρu
f · ρl

f

| f |2 dH2

︸ ︷︷ ︸
=:I

)1/2

.

For each j ∈ {1, ...,m} we define the curve family

�′
j = {γ j

θ : t ∈ E ′
m}.

Lemma 4.4 applied to �′
j shows that H1(|γ j

θ | ∩ X0) = 0 for almost every θ ∈ E ′
m

and every j ∈ {1, ...,m}, where X0 is as in Theorem 3.1. Hence, if

F ′′
m = {x ∈ X : x ∈ |γ j

θ | for some θ ∈ E ′
m and 1 ≤ j ≤ m} ⊃ F ′

m,

thenH2(F ′′
m∩X0) = 0 and N (y, f , F ′′

m) ≤ m for every y ∈ R
2. By the area inequality

(Theorem 3.1) and polar coordinates,

I ≤ 4
√
2

∫
Em

∫ 1

r

N (seiθ , f , F ′′
m)

s
ds dθ ≤ 4

√
2 · |Em |1 · m · log 1

r
.

The lemma follows by combining the estimates. ��
Proposition 4.2 follows from Lemma 4.9: notice that by scaling we may assume

that f (B(x0, 2s)) ⊂ D(0, 1), so that the conditions of Lemma 4.9 are satisfied. Recall
that the sets Fm are pairwise disjoint. Therefore, summing the estimate in Lemma 4.9
over m gives

∫ 2π

0
N (reiθ , f , B(x0, s)) dθ =

∞∑
m=1

m|Em |1

≤ C log
1

r

∞∑
m=1

∫
Fm

K f (x) dH2

≤ C log
1

r

∫
X
K f (x) dH2.

We may replace X with a compactly contained subdomain if necessary to guarantee
that K f is integrable. Proposition 4.2 follows.

5 Regularity of the inverse

In this sectionwe study the regularity of the inverse of amapping of finite distortion and
prove Theorem 1.3. Let f ∈ N 1,2

loc (X ,�′) be a homeomorphism with K f ∈ L1
loc(X),
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where �′ ⊂ R
2. We set φ = f −1 : �′ → X and define ψ : �′ → [0,∞] by

ψ(y) = 1

ρl
f (φ(y))

.

Lemma 5.1 We have

∫
E

ψ(y)2 dy ≤ 2
∫

φ(E)

K f (x) dH2(x)

for every Borel set E ⊂ �′. In particular, ψ ∈ L2
loc(�

′).

Proof Again, let u : U → X , U ⊂ R
2, be a weakly (4/π)-quasiconformal

parametrization and h = f ◦ u. Then h is locally in N 1,2(U ,R2) and monotone.
Therefore, h satisfies Condition (N ) and consequently the euclidean area formula, see
[30]. Combining the area formula with distortion estimates established in previous
sections, we have

∫
E

ψ(y)2 dy =
∫
h−1(E)

J (apmd hz)

ρl
f (u(z))2

dz =
∫
h−1(E)

Lh(z) · lh(z)
ρl
f (u(z))2

dz

≤
∫
h−1(E)

ρu
f (u(z)) · ρl

f (u(z))

ρl
f (u(z))2

Lu(z)
2 dz

≤ 2
∫
h−1(E)

K f (u(z)) · J (apmd uz) dz.

Here the second equality holds since both the domain and target of h are euclidean
domains and the first inequality holds by Lemma 2.10 and Proposition 3.2. The second
inequality holds by (2.6) and recalling that we can choose u so that the John ellipses
of apmd uz are disks for almost every z. The claim now follows from the area formula
for u (Theorem 2.6). ��
Lemma 5.2 Suppose α : X → R is 1-Lipschitz. Then v = α ◦ φ is absolutely contin-

uous on almost every line parallel to coordinate axes, and |∂ jv| ≤ 16
√
2

π
· ψ almost

everywhere for j = 1, 2.

Proof It suffices to consider horizontal lines. Fix a square Q ⊂ �′ with sides parallel
to coordinate axes. By scaling and translating, we may assume that Q = [0, 1]2.

By Lebesgue’s theorem, there exists a set � ⊂ (0, 1) of full measure so that if
s0 ∈ � then

1

2ε

∫
Fε

ψ(y) dy = 1

2ε

∫ s0+ε

s0−ε

∫ t2

t1
ψ(t, s) dt ds →

∫ t2

t1
ψ(t, s0) dt (5.1)

as ε → 0 for every 0 ≤ t1 < t2 ≤ 1, where Fε = [t1, t2] × [s0 − ε, s0 + ε].
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Fix s0 ∈ �. The claim now follows from Lemma 5.1 if we can show that

|φ(t2, s0) − φ(t1, s0)| ≤ 16
√
2

π

∫ t2

t1
ψ(t, s0) dt (5.2)

for every 0 ≤ t1 < t2 ≤ 1.
Given 0 < ε < min{s0, 1 − s0} we set Eε = φ(Fε). Let ϕ = π2 ◦ f |Eε , where π2

denotes projection to the s-axis on the (t, s)-plane. By continuity of ϕ, Lemma 4.4,
and the Sobolev coarea inequality (Theorem 2.2) applied to ϕ, we have

|φ(t2, s0) − φ(t1, s0)| ≤ δ(ε) + 1

2ε

∫ s0+ε

s0−ε

H1(ϕ−1(s) \ X0) ds

≤ δ(ε) + 2

πε

∫
Eε\X0

ρu
f · ρl

f

ρl
f

χρl
f 	=0 dH2,

where X0 is the set in the Area inequality (Theorem 3.1) and δ(ε) → 0 as ε → 0.
Combining with Theorem 3.1, we obtain

|φ(t2, s0) − φ(t1, s0)| ≤ δ(ε) + 8
√
2

πε

∫
Fε

ψ(y) dy. (5.3)

Now (5.2) follows by combining (5.3) and (5.1). ��

We are ready to prove Theorem 1.3. Since φ is continuous, dX (φ(·), x0) ∈ L2
loc(�

′)
for every x0 ∈ X . By Lemma 5.1 and the ACL-characterization of Sobolev functions
(see [13, Theorem 6.1.17]), we see that every v in Lemma 5.2 belongs to W 1,2

loc (�′)
and satisfies |∇v| ≤ 32ψ

π
almost everywhere. Furthermore, the characterization of

Sobolev maps in terms of post-compositions with 1-Lipschitz functions, i.e., in terms
of the functions v above (see [13, Theorem 7.1.20 and Proposition 7.1.36]), shows
that φ ∈ N 1,2

loc (�′, X). The proof is complete.

Remark 5.3 When X ⊂ R
2, the N 1,2

loc (X ,R2)-regularity assumption in Theorem 1.3

may be replaced with f ∈ N 1,1
loc (X ,R2). Moreover, the conclusion on the regularity

of f −1 is more precise, see [16]. While our results only concern N 1,2
loc -maps, it would

be interesting to extend the definition of finite distortion to N 1,1
loc -maps between metric

surfaces and develop basic properties including improvements of Theorem 1.3. One
cannot expect the conclusions of Remarks 2.3 and 2.8 to hold in the N 1,1-setting
without additional assumptions; maps f ∈ N 1,1

loc (X ,R2) of finite distortion need not
be continuous or satisfy Condition (N) even when X ⊂ R

2 (see e.g. [12]).
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6 Reciprocal surfaces

Recall the geometric definition of quasiconformality: a homeomorphism f : X → Y
is quasiconformal if there exists C ≥ 1 such that

C−1 Mod f (�) ≤ Mod� ≤ C Mod f (�) (6.1)

for each curve family � in X .
We say that metric surface X is reciprocal if there exists κ > 0 such that for every

topological quadrilateral Q ⊂ X and for the families �(Q) and �∗(Q) of curves
joining opposite sides of Q we have

Mod�(Q) · Mod�∗(Q) ≤ κ.

If X is reciprocal, x ∈ X and R > 0 so that X\B(x, R) 	= ∅, then by [35, Theorem
1.8] we have

lim
r→0

Mod�(B(x, r), X \ B(x, R); X) = 0. (6.2)

Recall that �(E, F;G) is the family of curves joining E and F in G.
Reciprocal surfaces are the metric surfaces that admit quasiconformal parametriza-

tions by euclidean domains, see [20, 35, 39]. See [9, 34–36, 39, 41] for further
properties of reciprocal surfaces.

It is desirable to find non-trivial conditions which imply reciprocality. For instance,
one could hope that the existence of maps satisfying the conditions of Theorem 1.2
forces X to be reciprocal. However, this is not the case.

Proposition 6.1 Given an increasing φ : [1,∞) → [1,∞) so that φ(t) → ∞ as t →
∞, there is a non-reciprocal metric surface X and a homeomorphism f : X → R

2 so
that f ∈ N 1,2

loc (X ,R2) and φ(K f ) is locally integrable.

The map f0 defined in the proof below is known as Ball’s map ([2]) and illustrates
that the integrability condition in Theorem 1.2 is sharp.

Proof Let f0 : R2 → R
2 be defined by f0(x, y) = (x, η(x, y)), where

η(x, y) =
⎧⎨
⎩

|x |y, 0 ≤ |x | ≤ 1, 0 ≤ |y| ≤ 1,
(2(|y| − 1) + |x |(2 − |y|)) y

|y| , 0 ≤ |x | ≤ 1, 1 ≤ |y| ≤ 2,
y, otherwise.

Note that f0 is not open and discrete since it maps the segment I = {0} × [−1, 1]
to the origin. Also, f0 is the identity outside (−1, 1) × (−2, 2). Calculating the Jaco-
bian matrix shows that f0 is sense-preserving and Lipschitz, K f0 is bounded outside
(−1, 1) × (−1, 1), and

K f0(x, y) = 1

|x | for all (x, y) ∈ (−1, 1) × (−1, 1). (6.3)
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It follows that K f0 is not in L1
loc(R

2) but K f0 ∈ L p
loc(R

2) for every 0 < p < 1.
We change themetric onR2 to obtain the desiredmetric surface X and f : X → R

2.
Define ω : R2 → [0, 1] by ω(z) = 1 when dist(z, I ) ≥ 1 and by

ω(z) = 1

φ(dist(z, I )−1)
(6.4)

otherwise, where I = {0} × [−1, 1]. Moreover, let

dω(x, y) := inf
γ

∫
γ

ω ds,

where the infimum is taken over all rectifiable curves γ connecting x, y ∈ R
2.

Now X = (R2/I , dω) is homeomorphic to R
2 and has locally finite H2-measure.

Let π : R2 → R
2/I be the projection map, idω : R2/I → X the identity, and

πω : R2 → X , πω = idω ◦π .
Since modulus is conformally invariant and ω is a conformal change of metric

outside I , the family of curves joining any non-trivial continuum and the point p :=
πω(I ) in X has positive modulus. By (6.2), it follows that X is non-reciprocal.

We define f : X → R
2 by f := f0 ◦ π−1

ω . Then f is absolutely continuous on
almost every rectifiable curve in X , and ρu

f (z) ≤ (ω(z))−1 · L for almost every z ∈ X ,
where L is the Lipschitz constant of f0. Therefore,

∫
E
(ρu

f )
2 dH2 ≤ L2|π−1

ω (E)|2

for every Borel set E ⊂ X . We conclude that f ∈ N 1,2
loc (X ,R2).

It remains to estimate the integral of φ(K f ). To this end, notice that since ω is a
conformal change of metric, we have

K f (z) = K f0(π
−1
ω (z))

for almost every z ∈ X . Therefore, it suffices to check that φ(K f ) is integrable over
E = πω((−1, 1) × (−1, 1)). By (6.3) and (6.4), we have

∫
E

φ(K f (z)) dH2 =
∫

(−1,1)2
φ(K f0) · ω2 dx dy ≤

∫
(−1,1)2

1

φ(|x |−1)
dx dy < ∞.

The proof is complete. ��
We prove in [33, Theorem 1.3] that if there is a non-constant f ∈ FDP(X ,R2)

(not necessarily a homeomorphism) with bounded distortion, then X is reciprocal. We
also show (see [33, Corollary 1.2]) that the geometric definition (6.1) is quantitatively
equivalent with the path definition (requiring K f to be bounded) of quasiconformality
for homeomorphisms f : X → R

2. By Williams’ theorem [47], the equivalence
between the analytic (requiringC(x) to be bounded in (1.5)) and geometric definitions
of quasiconformality for homeomorphisms holds in even greater generality.
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7 Existence of maximal weak lower gradients

Let X and Y be metric surfaces. We now complete the discussion in Sect. 2.3 by
proving that each f ∈ N 1,2

loc (X ,Y ) has a maximal weak lower gradient. Precisely, we
claim that there is a weak lower gradient ρl

f of f so that if ρl is another weak lower
gradient of f then

ρl
f (x) ≥ ρl(x) for almost every x ∈ X .

Moreover,ρl
f is unique up to a set ofmeasure zero. The proof of these facts is analogous

to the existence of minimal weak upper gradients, see [13, Theorem 6.3.20].
First, recall that f is absolutely continuous along almost every curve [13, Lemma

6.3.1]. It follows from [13, Lemma 5.2.16] that if ρ is a weak lower gradient of f
and σ : X → [0,∞] is a Borel function such that σ = ρ almost everywhere in X ,
then σ is a weak lower gradient of f . In particular, if E ⊂ X is Borel and satisfies
H2(E) = 0 then ρχX\E is a weak lower gradient of u, compare to [13, Lemma 6.2.8].
We conclude that if there exists a maximal weak lower gradient ρl

f of f , it has to be
unique up to sets of measure zero.

To prove existence of ρl
f , we may assume without loss of generality thatH2(X) <

∞. Arguing exactly as in the proof of [13, Lemma 6.3.8], we can show that if σ, τ ∈
L2(X) are weak lower gradients of a map f : X → Y that is absolutely continuous
along almost every curve in X and if E is a measurable subset of X then the function

ρ = σ · χE + τ · χX\E

is a weak lower gradient of f . Now, by choosing E = {x ∈ X : σ > τ }, it follows
that ρ : X → [0,∞] defined by

ρ(x) = max{σ(x), τ (x)}

is a 2-integrable weak lower gradient of f . After applying Fuglede’s lemma, see e.g.
[13, Section 5.1], we established the following lemma.

Lemma 7.1 If f : X → Y is absolutely continuous along almost every curve, then
the collection L of 2-integrable weak lower gradients of f is closed under pointwise
maximum operations.

Let (ρi ) ⊂ L be a sequence such that

lim
i→∞ ||ρi ||L2 = sup{||ρ||L2 : ρ ∈ L}.

By Lemma 7.1, the sequence (ρ′
i ) given by ρ′

i (x) = max1≤ j≤i ρ j (x) is inL. Note that
(ρ′

i ) is pointwise increasing. The limit function

ρl
f := lim

i→∞ ρ′
i
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is Borel by [13, Proposition 3.3.22]. The monotone convergence theorem implies that
ρ′
i → ρl

f in L2(X) and by Fuglede’s lemma ρl
f ∈ L, see e.g. [16, Section 5.1]. By

construction, ρl
f is a maximal weak lower gradient of f . The proof is complete.
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