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Abstract

We investigate basic properties of mappings of finite distortion f : X — R?, where
X is any metric surface, i.e., metric space homeomorphic to a planar domain with
locally finite 2-dimensional Hausdorff measure. We introduce lower gradients, which
complement the upper gradients of Heinonen and Koskela, to study the distortion of
non-homeomorphic maps on metric spaces. We extend the Iwaniec-Sverak theorem
to metric surfaces: a non-constant f : X — R? with locally square integrable upper
gradient and locally integrable distortion is continuous, open and discrete. We also
extend the Hencl-Koskela theorem by showing that if f is moreover injective then
£~ !is a Sobolev map.

Mathematics Subject Classification Primary 30L.10 - 30C65; Secondary 30F10

1 Introduction
1.1 Background
Let Q C R? be a domain. We say that map f : @ — R? in the Sobolev space

WIL’S(Q, R?) has finite distortion if there is a measurable function K : Q — [1, 00)
so that

||Df()c)||2 < K(x)Js(x) forae. x € Q. (1.1)
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Here ||Df(x)|| and Jy(x) are the operator norm and determinant of Df(x),
respectively.

If K(x) = 1 for almost every x € €2, then (1.1) is valid if and only if f is
complex analytic. The basic topological properties of non-constant analytic functions
are continuity, openness and discreteness (the preimage of every point is discrete in
Q).

By Stoilow factorization (see [1, Chapter 5.5], [27]) non-constant guasiregular
maps, i.e., maps f satisfying (1.1) with constant function K(x) = K > 1, admit
a factorization f = g o h, where & is a quasiconformal homeomorphism and g is
analytic. In particular, every such f is also continuous, open and discrete.

In [22] Iwaniec and Sverdk showed that boundedness of K (x) may be replaced
with local integrability.

Theorem 1.1 (Iwaniec-Sverdk theorem) Suppose f € W[L’CZ(Q, R?) is non-constant
and satisfies (1.1) for some locally integrable K (x). Then f is continuous, open and
discrete.

The assumption on K (x) is essentially best possible (see [2] and [17]). Since the
work of Iwaniec and Sverdk [22], a rich theory of mappings of finite distortion has
been developed (see [1, 12]), with applications to PDE, complex dynamics, inverse
problems and non-linear elasticity theory, among other fields.

The theory extends to Wlé’cl -maps with exponentially integrable distortion and also
to higher dimensions, where continuity, openness and discreteness of quasiregular
maps was proved by Reshetnyak already in the 1960s (see [42]). Reshetnyak’s theorem
has been extended to spatial mappings of finite distortion by several authors (see [13,
20, 21, 25, 26, 37, 38, 45, 46]).

Partially motivated by works of Heinonen and Keith [16], Heinonen-Rickman [17]
and Heinonen—Sullivan [18], on BLD- and bi-Lipschitz parametrizations of metric
spaces, Kirsild [24] furthermore extended Reshetnyak’s theorem to maps f : X —
R", where X is a generalized n-manifold satisfying assumptions such as Ahlfors
n-regularity and Poincaré inequality.

In this paper we extend the Iwaniec-Sverdk theorem to maps f : X — R?, where X
is a metric surface, i.e., a metric space homeomorphic to a domain in R? with locally
finite 2-dimensional Hausdorff measure. The novelty of our results is that we do not
impose any additional conditions on X.

Our research is partially inspired by recent advances on the uniformization problem
on metric surfaces (see [5, 20, 30, 34-36, 39]) and the properties of the associated
homeomorphisms, such as quasiconformal maps f : X — R2. It is desirable to
explore the properties of non-homeomorphic maps on metric surfaces. The aim of our
paper is to provide the first results in this direction.

1.2 Mappings of finite distortion on metric surfaces
A (euclidean) metric surface X is a metric space homeomorphic to a domain U C R?

and with locally finite 2-dimensional Hausdorff measure. Below, H? will always be
the reference measure on X.
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Let X and Y be metric surfaces. We want to establish what it means for a map
f: X — Y to have finite distortion. We first observe that in the euclidean case every
mapping of finite distortion is sense-preserving. This follows from inequality (1.1)
by applying non-negativity of the Jacobian determinant and integration by parts, a
method which is not available in our generality. We call f : X — Y sense-preserving
if for any domain €2 compactly contained in X so that f|3q is continuous it follows
that deg(y, f,2) > 1 forany y € f(2)\f(92). Here deg is the local topological
degree of f, see [40, 1.4] for a definition in the euclidean setting and note that the
concept transfers to our setting as every metric surface is homeomorphic to a domain
in R2.

We apply the theory of Sobolev spaces based on upper gradients ([13]). A Borel
function p* : X — [0, oo] is an upper gradient of f : X — Y, if

dy (f(x), f(y) S‘/.p”ds (1.2)

14

for all x, y € X and every rectifiable curve y in X joining x and y. We say that f
belongs to the Sobolev space NlL’CZ (X, Y) if f has an upper gradient p* € leoc(X )
andifdy(y, f(-)) € LIZOC(X) for some y € Y (see Sect.2.3).

It follows from the proof of [11, Theorem 1.4] that a sense-preserving map f €
Nllo’c2 (X, R?) is continuous (see Remark 2.3). Such an f alsosatisfies Lusin’s Condition
(N):if E C X and H?(E) = 0, then | f(E)|, = 0 (see Remark 2.8). The converse
implication does not hold ([39, Section 17]).

In order to define the distortion of f, we introduce lower gradients: a Borel func-
tion p! : X — [0, oo] is a lower gradient of f € ng’cz(X, Y), if p! < p'}‘c almost
everywhere and

(foy)= f o ds (13)

14

for every rectifiable curve y in X with f o y being continuous. Our definition is
motivated by the observation that the upper gradient inequality (1.2) is equivalent to
the reverse inequality of (1.3) for p* (see Sect.2.3). Every f € NIL’CZ(X, Y) has an
essentially unique minimal weak upper gradient pf;- (see Sect.2.3). Similarly, we prove
in Sect.7 that every such f has an essentially unique maximal weak lower gradient
ply.

We say that a sense-preserving f € Nlt’cz (X, Y) has finite distortion (along paths)
and denote f € FDP(X, Y), if there is a measurable K : X — [1, co) such that

p]“c(x) < K(x)- ,osp(x) for almost every x € X. (1.4)
The distortion K ¢ of f is
o (x)

, ifpl(x) #£0,
Kp(x):={ A Py #
1, imgmza

@ Springer



D. Meier, K. Rajala

Our main result is the following extension of the Iwaniec-Sverdk theorem. Here X
is any metric surface.

Theorem 1.2 Let f € FDP(X, R?) be non-constant with Ky e L}OC(X). Then f is
open and discrete.

Generalizing the euclidean result by Hencl-Koskela (who assumed W ! -regularity,
see [16]), we show that if f is furthermore a homeomorphism, then the inverse is also
a Sobolev map. For a related result see [4].

Theorem 1.3 Let f € FDP(X,R?) be injective with Ky € L} (X). Then f~! €
N2 (f(X), X).

Examples in [2] ( fy in Proposition 6.1 below, see also [17]) and [16, Example 1.4],
respectively, show that condition K y € LIIOC(X ) is sharp both in Theorem 1.2 and in
Theorem 1.3, even if X = R2.

We show in Sect. 6 that there are metric surfaces X which do not admit any qua-
siconformal maps & : X — R? but do admit maps f : X — R? satisfying the
assumptions of Theorem 1.2. By [33, Theorem 1.3], such surfaces do not exist if we
require K ¢ to be bounded instead of integrable.

Previous approaches to distortion of maps between metric spaces are mostly based
on the analytic definition: We say that a sense-preserving f € Nlt’f(X , Y) has finite
analytic distortion and denote f € FDA(X,Y), if there is a measurable C: X —
[1, c0) such that

,o;‘c(x)2 < C(x)-Js(x) foralmostevery x € X, (1.5)
where

HE(f(B(x,1)))

Jf(x) = limsup 3

r—0 r

Inequality (1.5) is equivalent to (1.4) in the euclidean setting, and also provides arich
theory for homeomorphisms between metric spaces. However, unlike our approach
based on lower gradients, the analytic approach is not convenient for treating non-
homeomorphic maps between metric surfaces. We nevertheless prove the following
in [33].

Theorem 1.4 ([33, Theorem 1.1]) If f € FDA(X,R?), then f € FDP(X,R?).
Moreover, for every C(x) in (1.5) we have

Kyr(x) < 4«/§C(x) for almost every x € X.
Theorem 1.2 can be applied to prove the converse of Theorem 1.4 assuming K €
LIIOC(X, R?), see [33]. Combining Theorems 1.2, 1.3 and 1.4 shows that our main

results hold under the analytic assumption.
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Corollary 1.5 Let f € FDA(X, R?) be non-constant with C(x) € L}, (X). Then f is
open and discrete. If f is injective, then f~! € le)’cz(f(X), X).

The definition of a metric surface can be relaxed by requiring X to be homeomorphic
to an oriented topological surface M instead of a domain in R?. Our definitions and
results are local and remain valid under the relaxed definition. We state them only for
euclidean metric surfaces to simplify the presentation.

This paper is organized as follows. In Sect. 2 we recall the background on Analysis
in metric spaces needed to prove our main results. In Sect. 3 we prove an area inequality
for maps on the rectifiable part of a metric surface which involves lower gradients and
may be of independent interest. We prove Theorems 1.2 and 1.3 in Sects.4 and 5,
respectively.

The proofs are based on three main tools: the coarea inequality for Sobolev functions
on metric surfaces by Meier- Ntalampekos [32] and Esmayli- Ikonen- Rajala [11],
weakly quasiconformal parametrizations of metric surfaces by Ntalampekos- Romney
[35, 36] and Meier- Wenger [34], and the area inequality proved in Sect. 3. In addition,
to prove Theorem 1.2 we apply estimates inspired by the value distribution theory of
quasiregular mappings (see [40]).

In Sect. 6, we discuss connections between our results and the uniformization prob-
lem on metric surfaces, as well as different definitions of mappings with controlled
distortion. Finally, in Sect. 7 we prove the existence of maximal weak lower gradients.

2 Preliminaries
2.1 Basic definitions and notations

Let (X, d) be a metric space. We denote the open and closed ball in X of radius » > 0
centered at a point x € X by B(x, r) and B(x, r), respectively. When X = R? we use
notation D(x, r) instead of B(x, r).

A set 2 C X homeomorphic to the unit disc ID(0, 1) is a Jordan domain in X if its
boundary 02 C X is a Jordan curve in X, i.e., a subset of X homeomorphic to st
The image of a curve y in X is indicated by |y | and the length by £(y).

A curve y is rectifiable if £(y) < oo and locally rectifiable if each of its compact
subcurves is rectifiable. Moreover, a curve y: [a,b] — X is geodesic if £(y) =
d(y(a), y(b)). Acurve y: [0, £(y)] — X is parametrized by arclength if £(y|;) =
|11 for every interval I C [0, £(y)]. Here, | - |, denotes the n-dimensional Lebesgue
measure.

For s > 0, we denote the s-dimensional Hausdorff measure of A C X by H*(A).
The normalizing constant is chosen so that | V|, = H" (V) for open subsets V of R”".

We equip X with H2. Let LP(X) (sz)C (X)) denote the space of p-integrable (locally
p-integrable) Borel functions from X to R U {—o0, oo}. Here locally p-integrable
means p-integrable on compact subsets. We say that a subdomain G of X is compactly
contained in X if the closure G is compact.
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2.2 Modulus

Let X be a metric space and I" be a family of curves in X. A Borel function g: X —
[0, oo] is admissible for T if fy gds > 1 for all locally rectifiable curves y € I'. We
define the (2-)modulus of I as

Mod T = inf/ grdH>,
8 Jx

where the infimum is taken over all admissible functions g for I'. If there are no
admissible functions for I' we set Mod I = oco. A property is said to hold for almost
every curve in I if it holds for every curve in I' \ I'g for some family 'y C I with
Mod(I'g) = 0. In the definition of Mod(I"), the infimum can equivalently be taken
over all weakly admissible functions, i.e., Borel functions g: X — [0, oo] such that
fy g > 1 for almost every locally rectifiable curve y € I'.

2.3 Metric Sobolev spaces

Let f: X — Y be a map between metric spaces. A Borel function p*: X — [0, oo]
is an upper gradient of f if

dy (f (). fO)) < / P ds @1

14

for all x, y € X and every rectifiable curve y in X joining x and y. If the upper
gradient inequality (2.1) holds for almost every rectifiable curve y in X joining x and
y we call p* weak upper gradient of f.

The Sobolev space N2(X, Y) is the space of Borel maps f: X — Y with upper
gradient p" € L?(X) such that x — dy (y, f(x))isin L2%(X) for some and thus any
y € Y. The space Nllo’c2 (X, Y) is defined in the obvious manner.

Each f € Nllo’c2 (X, Y) has a minimal weak upper gradient p;, i.e., for any other
weak upper gradient p* we have ,oj"c < p" almost everywhere. Moreover, ,0]“( is unique
up to a set of measure zero. See monograph [13] for more background on metric
Sobolev spaces.

We apply a notion of “minimal stretching” which compliments the “maximal
stretching” represented by ugper gradients. To motivate the definition, notice that
for continuous maps f € NIL’C (X, Y) the upper gradient inequality (2.1) is equivalent
to

Z(fOV)E/p“ds

14

for almost every rectifiable curve y in X. We call a Borel function pl : X — [0, o0]
a lower gradient of [ € Nllo‘c2 (X,Y),if pl < ,o’jc almost everywhere and
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(foy)= / ol ds 22)
Y

for every rectifiable curve y in X with f o y being continuous. If the lower gradient
inequality (2.2) holds for almost every rectifiable y, we call p! weak lower gradient
of f. Note that 0 is always a lower gradient.

Each f € NIL’CZ (X, Y) has a maximal weak lower gradient ,oéc, i.e., for any other
weak lower gradient o' we have pic > pl almost everywhere. Moreover, ,o} is unique
up to a set of measure zero. The proof is analogous to the existence of minimal weak
upper gradients, see [13, Theorem 6.3.20]. For completeness, we provide a proof in
Sect. 7.

2.4 Coarea inequality on metric surfaces

We state the following coarea inequality for Lipschitz functions, which is a conse-
quence of [10, Theorem 1.1] (see [11, Section 5]). Here, Lip(z) denotes the pointwise
Lipschitz constant of a Lipschitz function u: X — R, defined by

) ) [u(y) —u(x)|
L —1 wyn B
R A Te

Theorem 2.1 (Lipschitz coarea inequality) Let X be a metric space andu: X — Ra
Lipschitz function. Then

%
1 4 . 2
gdH dt < — | g-Lip(u)dH

- u=l(@) T JX

for every Borel measurable g : X — [0, oo].

Here [ * denotes the upper integral, which is equal to Lebesgue integral for measur-
able functions. An important tool throughout this work will be the following coarea
inequality for continuous Sobolev functions on metric surfaces.

Theorem 2.2 (Sobolev coarea inequality, [32, Theorem 1.6]) Let X be a metric surface

andv: X — R be a continuous function in N, 11)’3 (X).

(1) If A, denotes the union of all non-degenerate components of the level sets v~ (1),
t € R, of v, then A, is a Borel set.
(2) For every Borel function g: X — [0, oo] we have

k
4
// gdHldtf—/g~,0,’fd’H2.
vl(HNA, T
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Theorem 2.2 generalizes the coarea inequality for monotone Sobolev functions
established in [11]. Here v: X — R is called a weakly monotone function if for every
open 2 compactly contained in X

supv <supv <oo and infv>infv > —oo0.
Q PYe) Q Q2

A continuous weakly monotone function is monotone.

Remark 2.3 In the proof of [11, Theorem 1.4] the coarea inequality for mono-
tone Sobolev functions is used to show that every weakly monotone function v €
NIL’CZ (X, R) is continuous and hence monotone. Continuity of a sense-preserving map
feN ILCZ (X, R?) now follows by applying the exact same proof strategy while replac-
ing weak monotonicity with sense-preservation and the coarea inequality for monotone
Sobolev maps with Theorem 2.2.

2.5 Metric differentiability

Let (Y, d) be a complete metric space and U C R", n > 1, a domain. We say
that h: U — Y is approximately metrically differentiable at z € U if there exists a
seminorm N, on R? for which

. d(h(y),h(2)) = N(y —2) _
ap lim =
y=z ly —z|

0.

Here, ap lim denotes the approximate limit (see [8, Section 1.7.2]). If such a seminorm
exists, it is unique and is called approximate metric derivative of h at z, denoted
apmd &,. The following result follows from [29, Lemma 3.1].

Lemma 2.4 Let X and Y be metric surfaces and f € NIL’CZ(X, Y). Almost every curve
y: la, b] = X parametrized by arclength satisfies

b
ff gds =f g(f(y@))) -apmd(f oy);dt
oy a

for all Borel measurable g : Y — [0, oo].

Lemma 2.4 leads to the following properties of upper and lower gradients (see [13,
Proposition 6.3.3] for a proof involving upper gradients).

Corollary 2.5 Let X and Y be metric surfaces and f € NZL’L?(X, Y). Almost every
curve y: [a, b] — X parametrized by arclength satisfies the following properties.

(1) f is absolutely continuous on y,

(2) pép(y(t)) <apmd(foy) < p]“c(y(t))for almost everya <t < b,
(3) ifg : Y — [0, oo] is Borel measurable, then

[dwonas< [ gas< [ of@opas
4 foy 4

@ Springer



Mappings of finite distortion...

2.6 Area formula on euclidean domains
Suppose U C R? is a domain and / € NIIO’CZ(U, Y). Then U can be covered up to
a set of measure zero by countably many disjoint measurable sets G, j € N, such
that i|g i is Lipschitz. In particular, outside a set of measure zero Go C U, h satisfies
Lusin’s condition (N) (see [13, Theorem 8.1.49]).

By [28, Proposition 4.3], every h € Nllo’c2 (U, Y) is approximately metrically differ-
entiable at a.e. z € U. The following area formula follows from [23, Theorem 3.2].
Here, the Jacobian J(N,) of a seminorm N, on R? is zero if N, is not a norm and
J(N.) = n/|{y € R? : N.(y) < 1}|» otherwise.

Theorem 2.6 (Area formula) If h € N1’2(U, Y), then there exists Go C U with

loc

H2(Go) = 0 such that for every measurable set A C U \ Go we have
f J(apmd h,) dH?> = / N(y, h, A)dH>. (2.3)
A Y

Here, N(y, h, A) denotes the multiplicity of y € Y with respect to 4 in A:
N(y,h,A) =#{z€ A:h(z) =y} 2.4)

2.7 Weakly quasiconformal parametrizations

A map h: X — Y between metric surfaces is cell-like if the preimage of each point
is a continuum that is contractible in each of its open neighborhoods. A continuous,
surjective, proper and cell-like map h: X — Y is weakly C-quasiconformal if

Mod T < C Mod h(T")

holds for every family of curves I' in X. It follows from [47, Theorem 1.1] that every
weakly quasiconformal map 4: X — Y is contained in NIL’S (X,Y).

It was shown in [35] that any metric surface admits a weakly quasiconformal
parametrization, see also [30, 34, 36].

Theorem 2.7 ([35, Theorem 1.2]) Let X be any metric surface. There is a weakly
(4/m)-quasiconformal u: U — X, where U C R? is a domain.
Remark 2.8 Condition (N) for sense-preserving maps f € NIL’Cz (X, R?) can be proved
using the area formula and Theorem 2.7 as follows: suppose E C X and H*(E) = 0,
andletu: U — X be a(sense-preserving) weakly (4/m)-quasiconformal parametriza-
tion of X provided by Theorem 2.7. Define h: U — R2 by h := f o u. Then
ueNLEU, X)and h € N2 (U, R?), see [33, Theorem 2.5].

By Theorem 2.6 there exists Go C U with |Gg|a = 0 and such that (2.3) holds
for u and i and every measurable set A C U \ Go. We set X¢ := u(Gop). Now £ is
sense-preserving and thus monotone. Therefore, % satisfies Condition (N) by [31]. In
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particular, with the above notation,

[f(E)l2 < / J(@apmdh,)dz.
u=(E)

On the other hand, applying Theorem 2.6 to u shows that
/ J@pmdu;)dz < H*(E) =0,
u=l(E)

and so J(apmdu;) = 0 almost everywhere in u~1(E). Since u is weakly quasi-
conformal, it moreover follows that apmd u; = 0. Then, by Lemmas 2.9 and 2.10
below, J(apmdh,) = 0 almost everywhere in u~'(E) as well. We conclude that

If(E)]2 =0.

2.8 Distortion of Sobolev maps

Let U C R? be a domain. We define the maximal and minimal stretches of h €
NIL’CZ (U, Y) at points of approximate differentiability by

Lp(z) =max{apmdh,(v) : |[v| =1}, [5(z) = min{apmd k,(v) : |v| = 1}.

Recall thatmaps i € N, 11)3 (U, Y) are approximately differentiable almost everywhere.

Lemma29 Let h € NIL’CZ(U, Y). Then Ly, and lj, are representatives of the mini-
mal weak upper gradient and the maximal weak lower gradient of h, respectively.
Moreover,

27 'Ly ()n(z) < J(apmd ;) < 2L (2)1x(2) (2.5)

at points of approximate differentiability.
Proof The first claim concerning upper gradients is [32, Lemma 2.14]. A slight
modification of the proof gives the claim concerning lower gradients.

Towards (2.5), we may assume that ap md %, is a norm. Then the unit ball B, of
apmd h,(v) contains a unique ellipse of maximal area E., called the John ellipse of
B,, which satisfies

E. C B, C V2E., (2.6)
see [3, Theorem 3.1]. Let N, be the norm whose unit ball is £, and
M, = max{N,(v) : |v| =1}, m; = min{N;(v) : |v| = 1}.
Then J(N;) = n/|E;|>» = M,m_, and (2.6) gives

Ly@ly(z) < Mym, = J(N,) = 27/|N2E.|» < 21/|B;|» = 2J (apmd ;).

@ Springer



Mappings of finite distortion...

On the other hand, (2.6) also gives
J(@apmdh;) < J(N;) = Mymy < 2L (2)Ip(2).

The proof is complete. O
We will apply distortion estimates on composed mappings.

Lemma 2.10 Let X and Y be metric surfaces and U C R2 a domain, u : U —> X
weakly quasiconformal, and f € N IL’CZ(X ,Y). Then

liou(@) = (@) - 1u(2) and Lyou(2) < pu(2)) - Lu(2)
for almost every z € U.

Proof Let I'g be the family of paths y in U so that /,, does not satisfy the lower gradient
inequality (2.2) for # on some subcurve of y or péc does not satisfy the lower gradient
inequality for f on some subcurve of u o y. Then, since u is weakly quasiconformal
and /[, ,09 are weak lower gradients (Lemma 2.9), we conclude that Mod(I'g) = 0.
Applying Corollary 2.5, we have

afouoy)z/

p;ds > /(,o?ou) -l ds

uoy Y

for every y ¢ I'g parametrized by arclength. We conclude that (,09 ou) -1, is a weak
lower gradient of f ou.But! ., is a maximal weak lower gradient of f ou by Lemma
2.9. The first inequality follows. The second inequality is proved in a similar way. O

3 Area inequality on Metric surfaces

Let X and Y be metric surfaces. In this section we establish Theorem 3.1, an area
inequality for Sobolev maps in NIL’Cz(X , Y) on measurable subsets of the rectifiable
part of X. We apply Theorem 3.1 in Sects.4 and 5 below to prove our main results,
Theorems 1.2 and 1.3.

AsinRemark 2.8, letu: U — X be a weakly (4/7)-quasiconformal parametriza-
tion of X provided by Theorem2.7,andh: U — Y,h := fou.Thenu € Nllo’CZ(U, X)

and h € N1’2(U, Y). By Theorem 2.6, there exists Go C U with |G| = 0 and such

loc

that (2.3) holds for both # and /& and every measurable set A C U \ Go. We set
Xo :=u(Gyp).

Theorem 3.1 (Area inequality) If g: Y — [0,00] and E C X\Xo are Borel
measurable, then

fE S(F(0) - Pl (1) dHE < 442 fY ) NG, . E)dy.
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If in addition, the map f satisfies Lusin’s condition (N), then

fE g(f () - px)pk(x)dH? = gy - N(y, f, E)dy.

[

In order to establish Theorem 3.1, we make use of the following proposition which
can be seen as a counterpart to Lemma 2.10.

Proposition3.2 Let f, u and h = f o u be as above. Then

Pf(2) - lu(z) < Ly(z) and Ih(2) < p}(u(Z)) Ly (2) (3.1
for almost every z € U \ Gy.

Proof Fix Borel representatives of the maps z — apmdu, and z — apmdh;.
Towards the first inequality in (3.1), we denote

Gy=GoU{zeU: l,(z) =0},

and notice that it suffices to prove the inequality for almost every z € U \ G|,. By [28,
Proposition 4.3], there are pairwise disjoint Borel sets K; C U\Gy), i € N, so that

U\ (GyU (UiKi)]2 =0 (3.2)

and so that for every i € N we have
(1) apmd u; and apmd h, exist for every z € K; and

(i1) for every € > 0 there is r; (¢) > 0 so that

ldx (u(z +v), u(z + w)) —apmd u,(v — w)| < elv — w| and

ldy (h(z +v), h(z + w)) —apmd h (v — w)| < ¢lv — w|
foreveryz € K; andallv, w € R? with |v], jw| < r;(¢) and such that z+v, z4w €
K;.

We will show thatif i € Nthen almostevery curve y in X parametrized by arclength
has the following property: almost every ¢ € ¥~ (u(K;)) satisfies

Ly(z2)
Iu(2)

apmd(f oy); < forallz € u='(y (1)) N K. (3.3)

We show how to conclude the first inequality in (3.1) from (3.3). By Lemma 2.4,
Corollary 2.5 and (3.3), p: X — [0, oo] is a weak upper gradient of f, where p(x) =
p;‘c(x) for x € X \ u(K;) and

Ly (z)
n
zeKi, u()=x 1,(2)

px) =
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when x € u(K;). By the definition of minimal weak upper gradients, we then have
that

,0}”( (x) < p(x) for almost every x € u(Kj). 3.4)

Since K; C U \ G}, we have [, > 0 and thus J(apmdu;) > 0 in K;. Combining
(3.4) with the Area formula (Theorem 2.6) for u now yields

P u(2) - lu(z) < Lp(2)

for almost every z € K;. The first inequality in (3.1) follows from (3.2).

We now prove (3.3). Denote by X C X theset of points x for which N(x, u, U) = 1.
By [36, Remark 7.2], H>(X \ X ) = 0. In particular, almost every rectifiable curve
y : [0, £(y)] — X parametrized by arclength satisfies y () € X for H!-almost every
0<t <Ly

We fix such a y and a density point 7o € y~!(u(K;) N )A() =: T of T. By Corollary
2.5, we may moreover assume that f o y is approximately metrically differentiable at
to. It suffices to show that (3.3) holds for #y and the unique zo = u! (y(20)) € K;.

Fix asequence (¢;) of\points inT convergingtoz. Thenx; := y(t;) — vy (o) =: xo.
Moreover, since xo € X, we have z; := ul(x j) — zo. We are now in position to
apply Property (ii) above. Denoting y; = f(x;) for j = 0,1, ..., (ii) and triangle
inequality yield

dx(X',X()) Zj — 20

L > apmd g (L) — o(12) — 20]) = Lu(z0) = o(lz; = o)),
zj = zo lzj = zol

dy(y;. o) Zj — 20

SR < apmd gy (L) + oz — 20l) = Li(zo) + o(lz; — 0.
|2j = zol |2j = zol

Combining the inequalities, we have

dy(y;j, yo) _ dy(yj, yo) - 1zj — zol - Lp(z0)
dx(xj,x0) lzj —zol-dx(xj,x0) ~ Ilu(z0)

+o(|zj — zol). (3.5)

Since y is parametrized by arclength, (3.5) gives (3.3). The first inequality in (3.1)
follows. The second inequality follows in a similar way, namely showing that instead
of (3.3) we have

Ih(2)
L,(z)

apmd(f oy) =

outside suitable exceptional sets. We leave the details to the reader. O

Proof of Theorem 3.1 We may approximate g with simple functions and replace E
with appropriate subsets to see that it suffices to show the claim for g = 1. We set
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E=ENX , where X is as in the proof of Proposition 3.2, and obtain

NG, hou "WENY= Y Neuu "(EN=NGy [ E) (36
xef~1(y)

for every y € f(E’).
The area formula (Theorem 2.6) implies

[ ot = [ s eon e @) are

= /I(E/) pj‘c(u(z))pﬂc(u(z))J(ap mdu,)dz.

ByLemma?2.9, J(apmdu;) < 2L,(z)-l,(z) foralmostevery z € u~'(E"). Moreover,
it follows from the proof of Theorem 2.7 given in [35] that we can choose u so that
the John ellipse of ap md u; (see (2.6)) is a disk. Then L,(z) < «/ilu (z), which leads
to

J(@pmdu;) <2Lyu(z) - l,(z) <22 1,(z)> for almost every z € u™'(E').

Combining with Lemma 2.10 and Proposition 3.2, we conclude that

[ pwohwant <2z [ Lo
E u

—](E/)

Applying Lemma 2.9 and the area formula (Theorem 2.6) to &, we finally obtain

/ p?-(x)plf(x)de < 4\/5/ J(@pmdh,)dz
E u=1(E"
=42 Ny, h,u""(E"))dy.
FEN

The theorem follows by combining with (3.6).

For the second statement we note that f satisfying Lusin’s condition (N) implies
H>(f(E \ E)) = 0 as, by [36, Remark 7.2], H>(E \ E’) = 0. The rest of the proof
is analogous to the arguments above. O

4 Openness and discreteness

Throughout this section let f be as in Theorem 1.2, i.e., f € NIL’CZ (X, R?) is non-
constant, sense-preserving and satisfies K € LIIOC(X ). Recall that f is continuous by
Remark 2.3.

Amap f: X — R?is light if f~!(y) is totally disconnected for every y € RZ.
It is well-known that if f is continuous, sense-preserving and light, then f is open
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and discrete [43], [40, Lemma VI1.5.6]. Thus, in order to prove Theorem 1.2 it suffices
to show that f is in fact light. The proof of this fact relies on the following two
propositions involving estimates on the multiplicity of f (recall notation N (y, h, A)
for multiplicity in (2.4)).

Proposition 4.1 Suppose that there are s, rg > 0 and C > 0 such that

2
/ N(f(xo) +re'?, f, B(xg,s))do < Clogl 4.1)
0 r

for all r < ro. Then the xo-component of f_l(f(xo)) either is {xo} or contains an
open neighborhood of x.

Recall that X is homeomorphic to a planar domain. In particular, for every xo € X
there is s > 0 so that B(xg, 2s) is a compact subset of X.

Proposition4.2 Let xo € X and s > 0 so that B(xo,2s) C X is compact. Then
Condition (4.1) holds with some ry, C > 0.

Theorem 1.2 follows by combining Propositions 4.1 and 4.2: since f is not constant,
for every yo € f(X) every component F of f~!(y) contains a point xo € X which
is a boundary point of F'. Combining Propositions 4.1 and 4.2, we see that F' = {x¢}.
We conclude that f is light and therefore open and discrete.

4.1 Proof of Proposition 4.1

Let f: X — R? be a map of finite distortion and I a curve family in X. We define
the weighted modulus

2
Mod i T = inf/ B0 e,
8 Jx Kf(x)

where the infimum is taken over all weakly admissible functions g for I'.

Let u: U — X be a weakly (4/m)-quasiconformal parametrization of X as in
Theorem 2.7. Let Gy C U and Xo = u(Go) C X be as in the paragraph preceding
Theorem 3.1. Recall that |Gglo = 0. We set X' := X \ Xj.

Lemma4.3 Let I be a family of curves in @ C X with H'(|y| N Xo) = O for every
y € I'". Then

Modg-1 T < 4~/§/ g)>N(y, f,Q)dy,
RZ

whenever g is admissible for T = f(I").
Proof Fix an admissible g for ", and let g’: X — R,

§'(0) = g(f () - p(x) - xanx (x).
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Here, x g denotes the indicator functionon aset E C X, i.e., xg(x) = 1ifx € E and
x£(x) = 0 else. For almost every y € I’ we have that f is absolutely continuous on
v, H'(ly| N Xp) =0, and

[gas=[w@orppas= [ gas
Y Y ' foy

see Corollary 2.5. Since g is admissible for I' = f(I"), it follows that g’ is weakly
admissible for I'’. Moreover,

g'(x0)? dH = / g(f(x))* - ph(x)pl(x) dH?
K (x) Qnx’ ! !

< 4f2fRzg(”2 NGy, £, dy,

MOdK—I F/ S /
X

where the last inequality follows from the area inequality, Theorem 3.1. O

Lemmad4.4 Letp € Nllo‘f (X, R), and consider E C Rwith |E|1 > 0 and so that each
level set 9~ (1), t € E, contains a non-degenerate continuum n,. Then H' (n, N X¢) =
0 for almost every t € E.

Proof Note that ¢ = ¢ o u is in NIL’CZ(U, R). For every t € E,let7; = u~'(n,).
Then, since u is continuous and proper, 77; is a non-degenerate continuum for every
t € E. Moreover, the coarea inequality for Sobolev functions (Theorem 2.2) shows
that H'(7);) < oo for almost every ¢ € E. For every such ¢, there is a surjective
two-to-one 1-Lipschitz curve

v 10, 2H (] — 7,
cf. [41, Proposition 5.1]. Let T be the family of the curves 37, and let g: U — [0, o0]

be admissible for T'. We apply the coarea inequality for Sobolev functions (Theorem
2.2) and Holder’s inequality to obtain

* *
8
|E|1§/fgdsdt§2//gdH1d;5_ g~p%dH2
(el p T Je e

3 1/2 1/2
e (L) ([ )
4 U(E) U(E)

Since ,o% € leoc(U )and |E|; > 0itfollows that Mod(f‘) > 0. As a Sobolev function,
u is therefore absolutely continuous along ¥; for almost every ¢ € E, see e.g. [13,
Lemma 6.3.1]. Moreover, for almost every t € E we have that H! 7 N Gy) = 0,
since |Gol» = 0. Combining these two facts shows that H! (n; N Xo) = O for almost

everyt € E. m|
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Lemma4.5 Let V C X be open and connected, and I, J C V disjoint non-trivial
continua. There are E C R, |E|| > 0, and a family T’ = {y, : t € E} satisfying

(1) every y; € T is a non-degenerate curve connecting I and J in'V,

(2) there exists ¢ € NZL’CZ(V, R) such that for every t € E the curve y; € T’ has image

in the level set (p’l (t), and
(3) Modg-1 TV > 0.

Proof Replacing V with a compactly connected subdomain if necessary, we may
assume that

/ Kf(x)dH*(x) = K < 0. (4.2)
Vv

Fix points @ € I and b € J and a continuous curve 7 joining a and b in V. Define
¢: X — Rby ¢(x) = dist(x, |n]). As described in the proof of [39, Proposition 3.5],
wefinde’ > 0,aset Eg C (0, ¢') with H' (Eg) = 0,and foreveryr € E = (0,¢')\ Eo
arectifiable injective curve y; joining I and J in V, with image in the level set ¢ = (¢).
WesetI” ={y, :t € E}.

Let g: V — [0, o] be admissible for T'. We apply the coarea inequality for
Lipschitz maps (Theorem 2.1) and Holder’s inequality to obtain

8/
¢’ 5/ / gdsdt < i/ g(x)Kf(X)_l/2Kf(x)1/2d?—[2(x)
0 Jy T Jy

4 5 1/2 g(x)2 ) 1/2
- (/V Ki(x)dH (x)) </V —Kf(x) dH (x)) .

Combining with (4.2) gives

N\ 2
Mody 1 I’ > (%) >0,

IA

where we used that the estimate above holds for all admissible functions. O

If Z is a metric surface, G C Z a domain, and E, F - G disjoint sets, we denote
by I'(E, F; G) the family of curves joining E and F in G.

Lemma 4.6 For any ¢ > 0 the function g.: R*> — [0, 00) defined by

1 1\"!
g(y)=¢ <Iyl log — loglog —) XD(0,e-2
‘ Iy | P07

is admissible for T ({0}, 8D(0, e~2); R?) and

1
/ ge(y)*log —dy — 0
R? [yl
ase — 0.
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Proof Fix y € I'({0}, dDD(0, e~2); R?). We may assume that y : [0, £(y)] — R? is
parametrized by arclength and y (0) = 0. Then £(y) > ¢~ 2 and |y (t)| < ¢ for every
0 <t < £(y). We compute

126%)
/81 ds=/ g1y () dt
y 0

v 1 ! log | ! _ld
_/o (W)' T °g|y<r>|> :

e 2 1 1 -1
> f <tlog—10glog —) dt = oo,
0 t t

where the last equality follows since

d 1 1 1!
— logloglog — = — | s log —loglog — .
ds s s s

Thus, g, = ¢ - g1 is admissible for I'({0}, aD(0, e~2); R?) for any ¢ > 0.
In order to prove the second claim we use polar coordinates and compute

2 -1
(y)? 1o Ld =g? 1y|?lo 1 loglo 1 d
Rzgey g|y| y = - y g|y| g g|y| XD(0,e=2) &Y

2r pe? 1 1 2\ !
2
28/ / (rlog—(loglog—)) drde.
0 0 r r

The last term converges to 0 as ¢ — 0 since

-1
d ! 1 1\*
— | loglog — = | slog — [ loglog — .
ds s s s

The second claim follows. O

We are now able to prove Proposition 4.1. Let Vy be the xp-component of
B(x, s). Denote the xo-component of f “(fxo) NV by J. We may assume that
Vo \ £~ f(x0)) # 9, since otherwise there is nothing to prove. Towards contra-
diction, assume that J is a non-trivial continuum. Fix another non-trivial continuum
I.C Vo\f~'(f (xo)).

By scaling and translating the target we may assume that f(xo) = 0, f(I) N
D(0, e=2) = @, and that the constant ry in Condition (4.1) satisfies ro > e~ 2. Let
[V be the curve family from Lemma 4.5. Note that ' = f(I'’) is a subfamily of
I' ({0}, oID(O, e’z); Rz). Hence, we know from Lemma 4.6 that for any ¢ > 0 the
function g, is admissible for I'. Lemma 4.4 implies that Lemma 4.3 can be applied to
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our setting and thus

Modg 1 TV < 4v/2 / g N, f, B(xo, ) dy.
RZ

Since g, is symmetric with respect to the origin, combining Assumption (4.1) with
polar coordinates yields

e 2 27 )
/R 2g8<y>2N(y,f,B<xo,s)>dy= /0 rge(r)? A N(re', f, B(xo,5))d6 dr

,—2

¢ 1 1
< C/ rge(r)*log — dr = C/ g:(»)*log — dy.
0 r R2 [y

By the second part of Lemma 4.6, the right hand integral converges to 0 as ¢ goes
to 0. Thus, Modg -1 T’ = 0, contradicting Lemma 4.5. The proof is complete.

4.2 Proof of Proposition 4.2

Let x¢ and s be as in the statement. We may assume that f(xg) = 0. We first show
that £~!(y) is totally disconnected for most points y € f(X) around 0.

Lemma4.7 Let B’ be the set of those 0 < 0 < 2w for which there is Ry > 0 so that
f ~L(Rye'?) contains a non-degenerate continuum. Then ||} = 0.

Proof We define

fx)

X 1o Sl, = ,
(0 \fT(0)— @(x) ol

and note that p; /| f|1is aweak upper gradient of ¢. Towards a contradiction we assume

that |8’|; > 0. Then there are §,¢ > 0 and a set 85 C B, |B5l1 > 0, such that for
every 0 € ﬂg there exists Ry € [e, 1] for which f ~1(Rge'?) contains a continuum Ej
with H! (Eg) = §. As in the proof of Lemma 4.4, we see that almost every 6 € ,Bg the
continuum Ey is the image of a rectifiable curve yy, and the modulus of the family
of such curves is positive. By the definition of lower gradients and since f o yy is
constant by construction, we then have that ,0; = 0 almost everywhere in

E:UEQ.

0epBy
Furthermore, since f has finite distortion, also ,o]“, = 0 almost everywhere in E. Let
F={xeX:|f|=e pp(x) =0} DE.
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We apply the Sobolev coarea inequality (Theorem 2.2) to compute

0<8|ﬁ5|1</H <E9>d9<—/ pde2_0
B;

a contradiction. The proof is complete. O

Lemma 4.8 Let B be the set in Lemma 4.7. There exists 8 D B’ with |B|1 = 0, and
an open Q' C X, such that

(1) floisa lqcal homeomorphism, and
(2) if V="{te? :1>0,0ep},then >X\ f(V).

Proof SetV’' = {te' : 0 E B'st>0}.Lety € f(X)\V'andx € f~ L(y). Then, since
{x}is a component of /"~ I(y), there is a Jordan domain U in X such thatx € U and
y ¢ f(8U ). Let W, be the y-component of Rz\f(BU ) and Uy the x-component of
f- Lw,). It follows that f(@Uy,) C dWy. Indeed, otherwise there is a point a € U,
with f(a) € W, and therefore there exists a neighbourhood Y of f(a) in W,, but the
a-component of £~!(Y) is not contained in U,, which is a contradiction.

The assumption that f is sense-preserving now implies f(dUy,) = dW,. Using
basic degree theory, we conclude that f~!(z) has at most deg(y, f, U,) components
in Uy for every z € W,. Furthermore, arguing as in the proof of Lemma 4.7 we see
that for almost every such z all of these components are points. In other words,

N(z, f,Uy) < deg(y, f,Uy) <0

for almost every z € Wy. In particular, every x € U, satisfies the conditions in
Proposition 4.1, and therefore f|y, is open and discrete.
We have established the following.

(i) If y € f(X)\V’'and x € f~!(y), then x has a neighbourhood U, such that flu,
is open and discrete.

We define
= {x € X : x-component of f_l(f(x)) is {x}}.

Note that if x € ?2, then there exists a neighbourhood Y of f(x) such that the closure
of the x-component of f~!(Y) is compact. As above, , we find a neighbourhood Uy of
x such that f|y, is open and discrete. In particular, Qis open. Moreover, it follows
from (i) that Qo X \ f~1(V’). We have shown that

(ii) Qis open, f|g is open and discrete, and Qo X \ fLv.

Denote by B the branch set of f|g, i.e., the set of points where f|g fails to be locally
invertible, and define

B’ ={0<6 <21 :Re ¢ f(By) for some R > 0}.
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Recall that By is closed and countable, see [6, 7, 44], thus B” is countable. It follows
from Lemma 4.7 and (ii) that the sets " = Q \ By and B = B’ U B” possess the
desired properties. O

Lemma 4.9_Let meN, 0 < r < e 2 and assume that B(xg, 2s) is compact and
satisfies f(B(xg,2s)) C D, 1). If

En={0<6<27:N@re?, f, B(xo,s)) =m},

then

64+/2 1
m|Enli < */2_/ KydH®-log .
s Fin r

where F,, = {x € X :arg(f (x)) € Ep,}.

Proof We assume |E,,|; > 0, otherwise there is nothing to show. Let 8 and @’ be as
in Lemma 4.8. We set E|, = E,, \ 8 and note that |E}, |} = |E;|1 since |8]1 = 0. We
also denote

F),={x e X :arg(f(x)) € E,} C Fp.
Fix 6 € E; , then
flee? ct=r)h) c Q.

We can therefore apply path lifting of local homeomorphisms to curves Iy = {te’? :
r <t < 1} as follows: if {x1, ..., x,n} = f~(re!?) N B(x,s) then for every j €
{1, ..., m} there exists a maximal lift yej of Iy starting at x, see [40, Theorem I1.3.2].
Note thatif ¢: X — [0, 277) is defined by ¢ (x) = arg(f(x)), then the image of each
yéi is contained in the level set ¢! (6).

Since B(x, 2s) is compact and f (B(x,2s)) c DO, 1), every curve yej connects
B(x, s)and X\ B(x, 2s),and so H! (Iyej |) > s. Moreover, f|%j‘ isinjective. It follows
that

som <Y H(y ) < H({x € X s arg(f(x)) = 6}) (43)
j=1

forevery 6 € E,,.
We combine (4.3) with the Sobolev coarea inequality (Theorem 2.2) and Holder’s
inequality to compute

sem-|Epli=s-m-|E,h

<[ H'(xeX:arg(f(x)) =6} do
E/

m
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4 [ Py 4 (0 - P
<— / Lan? < / Ky L
Fu 1] 7 JF, /1

4 2\ Py Py Py 2\
F(LmK"dH> <f Vi dH) '

—,—/
=:1

A

For each j € {1, ..., m} we define the curve family
= {yej (1€ E)}.

Lemma 4.4 applied to F} shows that Hl(lygjl N Xo) = 0 for almost every 0 € E,
and every j € {1, ..., m}, where Xy is as in Theorem 3.1. Hence, if

F,Z:{xeX:xe|yé/|forsomet9€E,’,landlgjfm}DF

then HZ(F,’,ZOXO) =0and N(y, f, F,)) < mforeveryy € R?. By the area inequality
(Theorem 3.1) and polar coordinates,

N i0 F// 1
I<4v2 / Md d0 < 432 |Enly - m-log .
En

The lemma follows by combining the estimates. O

Proposition 4.2 follows from Lemma 4.9: notice that by scaling we may assume
that f (B(xo, 25)) C D(0, 1), so that the conditions of Lemma 4.9 are satisfied. Recall
that the sets F,, are pairwise disjoint. Therefore, summing the estimate in Lemma 4.9
over m gives

2

o0
N(re', f,B(xo.5)d6 = ) m|Enli

m=1

1 o
< Clog - 2
< ongf K y(x)dH
m=1°%"m
1
gcmg—/ K f(x)dH>.
rJx

We may replace X with a compactly contained subdomain if necessary to guarantee
that K 7 is integrable. Proposition 4.2 follows.
5 Regularity of the inverse

In this section we study the regularlty of the inverse of a mapping of finite distortion and
prove Theorem 1.3. Let f € Nloc (X, ') be a homeomorphism with K rE€ Ll (x),

loc
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where Q' € RZ. Weset ¢ = f~!: Q@ — X and define : Q' — [0, o] by
I p—
R
@ ()
Lemma 5.1 We have

/ v dy <2 / K (o) dH2(x)
E ¢(E)

for every Borel set E C Q. In particular, € L%OC(Q/).

Proof Again, let u : U — X, U C R2, be a weakly (4/m)-quasiconformal
parametrization and &7 = f o u. Then h is locally in N'2(U, R?) and monotone.
Therefore, h satisfies Condition (N) and consequently the euclidean area formula, see
[30]. Combining the area formula with distortion estimates established in previous
sections, we have

J(apmd i) Lp(z) - ln(2)
(y)d =/ SHPIER) =/ Zn) T g
/;zwy Y ey Pl (2)? ¢ ) P (2)? ‘

Lu(2)%dz

/ P4 () - ply (u(2)
- .
E P ()

< 2/ K¢(u(z)) - J(apmdu,)dz.
h=1(E)

Here the second equality holds since both the domain and target of & are euclidean
domains and the first inequality holds by Lemma 2.10 and Proposition 3.2. The second
inequality holds by (2.6) and recalling that we can choose u so that the John ellipses
of ap md u are disks for almost every z. The claim now follows from the area formula
for u (Theorem 2.6). O

Lemma 5.2 Suppose o : X — R is 1-Lipschitz. Then v = « o ¢ is absolutely contin-

uous on almost every line parallel to coordinate axes, and |9;v| < %ﬁ - Y almost
everywhere for j = 1, 2.

Proof 1t suffices to consider horizontal lines. Fix a square Q C ' with sides parallel
to coordinate axes. By scaling and translating, we may assume that Q = [0, 1]%.

By Lebesgue’s theorem, there exists a set ® C (0, 1) of full measure so that if
so € ® then

1 1 so+¢e  ph 5}
— | v(»dy= —/ / w(t,S)dtds%/ Y (t, s0) dt (5.1
2¢ Fe 2e s0—€ 31 1

ase — Oforevery 0 <t <t <1, where F, = [t1, 2] X [so — &, 5o + €].
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Fix sg € ®. The claim now follows from Lemma 5.1 if we can show that

9 (12, 50) — @ (11, 50)| < —/ v (1, so) dt (5.2)

forevery0 <t <, < 1.

Given 0 < ¢ < min{so, 1 — so} we set E; = ¢(F;). Let ¢ = 13 o f|g,, where 73
denotes projection to the s-axis on the (¢, s)-plane. By continuity of ¢, Lemma 4.4,
and the Sobolev coarea inequality (Theorem 2.2) applied to ¢, we have

so+¢€

1
1612, 50) — 6 (11, 50)| 55(8)+£/ Hi (o~ (s) \ Xo) ds

s0—&

2 ok
58(e>+—f brts fxp LodH?,
e ES\XO lof !

where X is the set in the Area inequality (Theorem 3.1) and §(¢) — 0 as e — O.
Combining with Theorem 3.1, we obtain

|p (22, 50) — ¢ (11, 50)| = 5(8)+—/ v(y)dy. (5.3)

Now (5.2) follows by combining (5.3) and (5.1). ]

We are ready to prove Theorem 1.3. Since ¢ is continuous, dx (¢ (-), xo) € lOC(Q )
for every xo € X. By Lemma 5.1 and the ACL-characterization of Sobolev functlons
(see [13, Theorem 6.1.17]), we see that every v in Lemma 5.2 belongs to Wloc ()
and satisfies |Vv| < 3271” almost everywhere. Furthermore, the characterization of
Sobolev maps in terms of post-compositions with 1-Lipschitz functions, i.e., in terms
of the functlons v above (see [13, Theorem 7.1.20 and Proposition 7.1.36]), shows

that ¢ € Nloc (€', X). The proof is complete.

Remark 5.3 When X C R?, the NIOC (X, R?)-regularity assumption in Theorem 1.3
may be replaced with f € Nl1 1(X RR?). Moreover, the conclusion on the regularity
of f~!is more precise, see [16]. While our results only concern Nllo’c2 -maps, it would
be interesting to extend the definition of finite distortion to NIL’CI -maps between metric
surfaces and develop basic properties including improvements of Theorem 1.3. One
cannot expect the conclusions of Remarks 2. 3 and 2.8 to hold in the N'-!-setting
without additional assumptions; maps f € NloC (X, R?) of finite distortion need not
be continuous or satisfy Condition (N) even when X C R2 (see e.g. [12]).
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6 Reciprocal surfaces

Recall the geometric definition of quasiconformality: a homeomorphism f: X — Y
is quasiconformal if there exists C > 1 such that

C'Mod £(I') < ModT < C Mod £(T") 6.1)

for each curve family I' in X.

We say that metric surface X is reciprocal if there exists k > 0 such that for every
topological quadrilateral Q9 C X and for the families I'(Q) and I'*(Q) of curves
joining opposite sides of O we have

ModT'(Q) - Mod T'*(Q) < .

If X is reciprocal, x € X and R > 0 so that X\ B(x, R) # {J, then by [35, Theorem
1.8] we have

lim Mod I'(B(x, r), X \ B(x, R): X) = 0. 6.2)

Recall that I'(E, F; G) is the family of curves joining E and F in G.

Reciprocal surfaces are the metric surfaces that admit quasiconformal parametriza-
tions by euclidean domains, see [20, 35, 39]. See [9, 34-36, 39, 41] for further
properties of reciprocal surfaces.

It is desirable to find non-trivial conditions which imply reciprocality. For instance,
one could hope that the existence of maps satisfying the conditions of Theorem 1.2
forces X to be reciprocal. However, this is not the case.

Proposition 6.1 Given an increasing ¢ : [1, 00) — [1, 00) so that p(t) — ccast —
o0, there is a non-reciprocal metric surface X and a homeomorphism f: X — R2 so
that f € N,L’Cz(X, R?) and ¢ (K r) is locally integrable.

The map fy defined in the proof below is known as Ball’s map ([2]) and illustrates
that the integrability condition in Theorem 1.2 is sharp.

Proof Let fy: R? — R? be defined by fo(x, y) = (x, n(x, y)), where

x|y, 0<|xI<1,0=<yl=1,
nx,y) =13 CUyl =1+ |x|2 - Iyl))|;—‘, O<xI<1, 1=yl <2,
v, otherwise.

Note that fy is not open and discrete since it maps the segment / = {0} x [—1, 1]
to the origin. Also, fj is the identity outside (—1, 1) x (=2, 2). Calculating the Jaco-
bian matrix shows that fj is sense-preserving and Lipschitz, K z, is bounded outside
(=1,1) x (=1, 1), and

Kp(x,y) = |)]C—| forall (x, y) € (=1, 1) x (=1, 1). 6.3)
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It follows that K , is notin L} .(R?) but K 7, € L{ (R?) forevery 0 < p < 1.
We change the metric on R? to obtain the desired metric surface X and f: X — R2.
Define @ : R?> — [0, 1] by w(z) = 1 when dist(z, /) > 1 and by

1

¢ (dist(z, N~ 4

w(z) =
otherwise, where I = {0} x [—1, 1]. Moreover, let

dy(x,y) = inf/ wds,
voJy

where the infimum is taken over all rectifiable curves y connecting x, y € R2.

Now X = (R?/I, d,,) is homeomorphic to R? and has locally finite 7{>-measure.
Let 7: R? — RZ?/I be the projection map, id,: R*/I — X the identity, and
o' R > X, 7, = id, or.

Since modulus is conformally invariant and @ is a conformal change of metric
outside 7, the family of curves joining any non-trivial continuum and the point p :=
7, (1) in X has positive modulus. By (6.2), it follows that X is non-reciprocal.

We define f : X — R?>by f := fyo T, I Then f is absolutely continuous on
almost every rectifiable curve in X, and pz‘p(z) < (w(z))~"- L for almost every z € X,
where L is the Lipschitz constant of fj. Therefore,

f (P dH? < L2n; (B
KG

for every Borel set E C X. We conclude that f € Nllo’c2 (X, Rz).
It remains to estimate the integral of ¢ (K 7). To this end, notice that since w is a
conformal change of metric, we have

K¢(2) = Kp(m, ' (2))

for almost every z € X. Therefore, it suffices to check that ¢ (K ) is integrable over
E =m,((—1,1) x (-1, 1)). By (6.3) and (6.4), we have

/ ¢(Kf(Z))dH2 = / o(K ) - w*dx dy < / dxdy < 0.
E (-1,1)2 (

12 o(xI™H
The proof is complete. O

We prove in [33, Theorem 1.3] that if there is a non-constant f € FDP(X, R2)
(not necessarily a homeomorphism) with bounded distortion, then X is reciprocal. We
also show (see [33, Corollary 1.2]) that the geometric definition (6.1) is quantitatively
equivalent with the path definition (requiring K r to be bounded) of quasiconformality
for homeomorphisms f : X — R2. By Williams’ theorem [47], the equivalence
between the analytic (requiring C (x) to be bounded in (1.5)) and geometric definitions
of quasiconformality for homeomorphisms holds in even greater generality.
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7 Existence of maximal weak lower gradients

Let X and Y be metric surfaces. We now complete the discussion in Sect.2.3 by
proving that each f € Nllo’c2 (X, Y) has a maximal weak lower gradient. Precisely, we
claim that there is a weak lower gradient ,09 of f so that if p! is another weak lower
gradient of f then

psc(x) > pl(x) for almost every x € X.

Moreover, ,0? isunique up to a set of measure zero. The proof of these facts is analogous
to the existence of minimal weak upper gradients, see [13, Theorem 6.3.20].

First, recall that f is absolutely continuous along almost every curve [13, Lemma
6.3.1]. It follows from [13, Lemma 5.2.16] that if p is a weak lower gradient of f
and o: X — [0, oo] is a Borel function such that 0 = p almost everywhere in X,
then o is a weak lower gradient of f. In particular, if E C X is Borel and satisfies
H?2 (E) = Othen p xx\£ is a weak lower gradient of u, compare to [13, Lemma 6.2.8].
We conclude that if there exists a maximal weak lower gradient p; of f, it has to be
unique up to sets of measure zero.

To prove existence of ol we may assume without loss of generality that H?(X) <
oo. Arguing exactly as in the proof of [13, Lemma 6.3.8], we can show thatif o, 7 €
L*(X) are weak lower gradients of a map f: X — Y that is absolutely continuous
along almost every curve in X and if E is a measurable subset of X then the function

P =0-XE+T: XX\E

is a weak lower gradient of f. Now, by choosing £ = {x € X : 0 > t}, it follows
that p: X — [0, oo] defined by

p(x) = max{o (x), 7(x)}

is a 2-integrable weak lower gradient of f. After applying Fuglede’s lemma, see e.g.
[13, Section 5.1], we established the following lemma.

Lemma?7.1 If f: X — Y is absolutely continuous along almost every curve, then
the collection L of 2-integrable weak lower gradients of f is closed under pointwise
maximum operations.

Let (p;) C L be a sequence such that
Tim lpill,2 = sup{llpll2 : p € L}.
1—> 00

By Lemma 7.1, the sequence (p;) given by p!(x) = max|<;<; pj(x) isin L. Note that
(plf ) is pointwise increasing. The limit function

plf = lim p]

i—00
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is Borel by [13, Proposition 3.3.22]. The monotone convergence theorem implies that
P, — plf in L?(X) and by Fuglede’s lemma ,09 € L, see e.g. [16, Section 5.1]. By

construction, p; is a maximal weak lower gradient of f. The proof is complete.
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