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a b s t r a c t

For an integer k ≥ 2, a k-community structure in an undirected graph is a partition of
its vertex set into k sets called communities, each of size at least two, such that every
vertex of the graph has proportionally at least as many neighbours in its own community
as in any other community. In this paper, we give a necessary and sufficient condition
for a forest on n vertices to admit a k-community structure. Furthermore, we provide
an O(k2 · n2)-time algorithm that computes such a k-community structure in a forest,
if it exists. These results extend a result of Bazgan et al., 2018. We also show that if
communities are allowed to have size one, then every forest with n ≥ k ≥ 2 vertices
admits a k-community structure that can be found in time O(k2 · n2). We then consider
threshold graphs and show that every connected threshold graph admits a 2-community
structure if and only if it is not isomorphic to a star; also if such a 2-community structure
exists, we explain how to obtain it in linear time. We further describe an infinite family
of disconnected threshold graphs, containing exactly one isolated vertex, that do not
admit any 2-community structure. Finally, we present a new infinite family of connected
graphs that may contain an even or an odd number of vertices without 2-community
structures, even if communities are allowed to have size one.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When it comes to modelling social networks, graphs are a powerful tool. The vertices of the graphs often represent
ndividuals, while the edges represent links/relationships between them. This underlying model allows us to analyse social
etworks from a structural perspective. In the research field around social networks, a particular focus has been put
n detecting so-called communities. In a network, a community can intuitively be seen as a subset of vertices of the
raph that are more densely connected to each other than to the vertices of the rest of the network. Problems motivated
y community detection in networks can mostly be put under the same umbrella as vertex partitioning problems and
roblems related to finding dense subgraphs. These problems have been widely studied and have applications in many
ifferent domains like for instance numerical analysis [5], scientific simulations [19], bioinformatics [14] and quantum
omputing [20] (see [6] for an overview regarding partitioning problems).
In partitioning problems, the parts of a valid partition must respect some constraints expressed in terms of other

arameters, such as the number of edges between the parts, the number of neighbours of each vertex within the different
arts, or the size of the parts. However, these constraints usually do not combine those parameters.
For instance, let us consider the Satisfactory Partition problem introduced in [4]. This problem and several of its variants

ave been intensively studied (see for instance [7,11–13]). The Satisfactory Partition problem consists in deciding if a given
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graph has a partition of its vertex set into two nonempty parts such that each vertex has at least as many neighbours in
its own part as in the other part. This condition may not reflect the natural partition into two communities that the graph
could admit. Consider the example in which a vertex/individual is linked to 10 other vertices/individuals belonging to
community 1 and to 100 vertices/individuals belonging to community 2. According to the definition of a satisfactory
partition, this vertex/individual clearly belongs to community 2. However, if there is no further vertex/individual in
the network belonging to community 1, but there are 900 further vertices/individuals in the network belonging to
community 2 (but not linked to our particular vertex/individual), then our vertex/individual is connected to everyone
in community 1, while only linked to a small proportion of vertices/individuals in community 2. Thus, it seems natural
that this vertex/individual should be a part of community 1.

Therefore, instead of considering the exact number of neighbours in each part, one may focus on the proportion of
neighbours in each part and require that each vertex has proportionally at least as many neighbours in its own part as
in the other part. This new constraint effectively combines two parameters: the number of neighbours within the parts
and the sizes of the parts. This was the standpoint suggested by Olsen in 2013 (see [18]), who argued that the notion of
proportionality in the definition of community structures is both intuitive and supported by observations in real world
networks; something that previous attempts at defining communities (see for example [10,15]) failed to capture.

In this paper, we follow Olsen’s view on communities. The formal definition of a community structure is as follows.

Definition 1 (Olsen [18]). A community structure of a connected graph G = (V , E) is a partition Π of the vertex set V such
that:

• |Π | ≥ 2,
• for every C ∈ Π , |C | ≥ 2,
• for every C ∈ Π , every v ∈ C and every C ′

∈ Π , C ̸= C ′, the following property holds:
|NC (v)|
|C | − 1

≥
|NC ′ (v)|

|C ′|
(1)

where NC (v) (resp. NC ′ (v)) is the set of neighbours of v in C (resp. in C ′).

In other words, a community structure of a connected graph G = (V , E) is a partition of its vertex set into at least two
ets (called the communities of G), each containing at least two vertices, such that every vertex is adjacent to proportionally
at least as many vertices in its own community as to vertices in any other community.

In [18], Olsen showed that a community structure can be found in polynomial time in any connected graph containing
at least four vertices, except the stars. On the other hand, he showed that determining whether a graph admits a
community that contains a predefined set of vertices is NP-complete. Notice that in the definition introduced by Olsen
in [18], the exact number of communities is not given, i.e., the only restriction is that there are at least two communities.
In [3,8], the notion of k-community structure was first used in order to fix the number of communities to some integer
k ≥ 2, i.e., a k-community structure is a community structure Π with |Π | = k, meaning it contains exactly k communities.

In [9], it was also shown that deciding whether there exists a connected k-community structure (i.e. a k-community
tructure in which the vertices of each community induce a connected subgraph) such that each community has the same
ize is NP-complete. Note that k is, in this case, part of the input. However, much more results have been obtained for
he special case when k = 2. First, it was shown in [8], that deciding whether a graph admits a 2-community structure
uch that both communities have equal size is NP-complete. In [3,9], the authors showed independently that every tree
ith n ≥ 4 vertices which is not isomorphic to a star admits a 2-community structure and that such a 2-community
tructure can be found in time O(n), even if we require the vertices in each community to induce a connected subgraph.
urthermore, the authors in [3] also showed that except for stars, graphs of maximum degree 3, graphs of minimum
egree at least |V |−3, and complement of bipartite graphs always admit a 2-community structure, which can be found in
olynomial time, even if we require connectivity of the communities. Recently, the authors of [1] introduced a framework,
hich allows to solve a special family of partitioning problems in polynomial time in classes of graphs of bounded clique-
idth. As an application, they showed that the problem of deciding whether there exists a k-community structure and

inding such a structure, if it exists, can be solved in polynomial time in classes of graphs of bounded clique-width. Notice
hat in general graphs, the complexity of deciding whether a given graph admits a k-community structure is still open,
ven if k is a fixed integer (not part of the input). In fact, until 2020 no graphs (except for stars) not admitting any
-community structure were known; the first infinite family of such graphs was presented in [2].
In the original definition of community structure introduced by Olsen, and the one of k-community structure

ntroduced in [3,8], each community must contain at least two vertices. One may relax this constraint and only require a
ommunity to be non-empty, i.e., to contain at least one vertex. It is important to note that allowing communities of size
ne does not make the problem necessarily trivial and is a natural generalization of the above definition of a community
tructure. In our paper, we use this version as well and call such a partition a generalized k-community structure. In [2],
he authors introduce the notion of proportionally dense subgraph (PDS), and in particular so-called 2-PDS partitions, which
orrespond exactly to generalized 2-community structures. Our notion of generalized k-community structure can therefore
e seen as a generalization of 2-PDS partitions to k-PDS partitions. The authors of [2] present two infinite families of

raphs: (i) one infinite family containing graphs with an even number of vertices that do not contain any generalized
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2-community structure; (ii) one infinite family containing graphs that do not admit any connected generalized 2-
community structure.

In this paper, we consider several graph classes and contribute with the following results. First, we extend a result
f [3,9] by characterizing, for any k ≥ 2, the forests on n vertices admitting a k-community structure. We also propose
n O(k2 · n2) algorithm to construct such a k-community structure, if it exists (see Section 3), and provide a similar result

for generalized k-community structures. Notice that a polynomial time algorithm for finding a k-community structure
in forests was already provided in [1], since such graphs have clique-width at most 3. However, the proposed algorithm
is XP parametrized by k. We therefore substantially improve on its complexity. Second, we show that any threshold
graph admits a generalized 2-community structure that can be found in linear time. Then, we give a characterization of
connected threshold graphs on n vertices and m edges that admit a 2-community structure, and show that, if it exists, it
can be found in time O(n + m). For the case of disconnected threshold graphs, we show that the only such graphs not
admitting a 2-community structure must contain exactly one isolated vertex. We exhibit an infinite family of such graphs
(see Section 4). Finally, we present an infinite family of connected graphs not admitting any generalized 2-community
structure. In contrast to [2], where another such family has been presented but with the restriction that every graph of
the family has an even number of vertices, our family contains graphs with an even number of vertices and graphs with
an odd number of vertices (see Section 5).

2. Preliminaries

2.1. Definitions and notation

In this paper, all graphs are simple and undirected. Let G = (V , E) be a graph. The neighbourhood of a vertex v ∈ V is
denoted by N(v), its closed neighbourhood by N[v] := N(v) ∪ {v} and its degree by d(v) := |N(v)|. The neighbourhood of

∈ V in V ′
⊆ V , denoted by NV ′ (v), is the set of vertices that are both in V ′ and adjacent to v, i.e., NV ′ (v) := N(v) ∩ V ′.

e say that a vertex v ∈ V is universal if N[v] = V . For v1, v2 ∈ V , we say that v1 and v2 are true twins, if N[v1] = N[v2];
we say that they are false twins, if N(v1) = N(v2).

A k-partition Π of G is a partition of V into k subsets C1, . . . , Ck. The subgraph of G = (V , E) induced by S ⊆ V is defined
as G[S] := (S, {uv ∈ E : u ∈ S and v ∈ S}). We denote by [[t]], with t ∈ N, the set {1, 2, . . . , t}. We say that a k-partition
Π = {C1, . . . , Ck} is connected, if G[Ci] is a connected subgraph, for all i ∈ [[k]].

A tree is a connected, acyclic graph and a forest is an acyclic graph. A star Sn is a tree on n+ 1 vertices, where exactly
one vertex has degree n (called the centre) and all of its n neighbours have degree 1 (called the leaves).

Let A be a finite, totally ordered set, called alphabet. The lexicographic order on the set of all k-tuples of symbols
from A, for some positive integer k, is the total order such that, for two such distinct tuples a = (a1, a2, . . . , ak) and
b = (b1, b2, . . . , bk), the tuple a is smaller than b with respect to the lexicographic order, denoted by a < b, if and only if
there exists i ∈ [[k]] with ai < bi and aj = bj for all j < i in the underlying order of the alphabet A.

Let us now formally define the main concept of our paper, namely k-community structures (as used in [3]).

Definition 2. A (connected) k-community structure of a graph G = (V , E) is a (connected) k-partition Π = {C1, . . . , Ck} of
the vertex set V such that:

• k ≥ 2,
• for all i ∈ [[k]], |Ci| ≥ 2,
• for all i ∈ [[k]], all v ∈ Ci and all j ∈ [[k]], j ̸= i, the following property holds:

|NCi (v)|
|Ci| − 1

≥
|NCj (v)|

|Cj|
. (2)

We say that a vertex v ∈ Ci, for i ∈ [[k]], is satisfied with respect to Π , if it satisfies (2) for all j ∈ [[k]]\{i}. In this paper,
we sometimes allow communities to have size one, thus slightly generalize the definition of a k-community structure. In
the above definition, besides changing |Ci| ≥ 2 into |Ci| ≥ 1, we reformulate (2) as

|NCi (v)| · |Cj| ≥ |NCj (v)| · (|Ci| − 1) . (3)

We call such a k-partition Π a generalized k-community structure, and we say that a vertex v ∈ Ci, for i ∈ [[k]], is satisfied
ith respect to Π , if it satisfies (3) for all j ∈ [[k]]\{i}.
Notice that the non-existence of a generalized k-community structure in a graph implies the non-existence of a k-

ommunity structure in this graph, but the converse is not necessarily true. Indeed, consider the star Sn with centre u and
n leaves v1, . . . , vn. As already observed in [18], Sn does not admit any k-community structure for k ≥ 2, but it contains
generalized k-community structure for any 2 ≤ k ≤ n + 1. Indeed, for i = 1, . . . , k − 1, set Ci = {vi}, and finally set

Ck = {u, vk, . . . , vn}. It is easy to see that {C1, . . . , Ck} yields a generalized k-community structure. Further, notice that
ny property that holds for a generalized k-community structure holds in particular for a k-community structure, but the
onverse is not necessarily true.
161
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2.2. Properties

In this section, we introduce several properties that are useful to show our results in the upcoming sections. First,
e introduce two properties that give sufficient conditions for a vertex to belong to a particular community within a
generalized) community structure.

roperty 1. Let G = (V , E) be a graph, let Π = {C1, C2} be a 2-community structure of G and let v ∈ V such that d(v) ≥ 1.
f NCi (v) = ∅, for some i ∈ {1, 2} then v ∈ C3−i.

roof. Since d(v) ≥ 1, NCi (v) = ∅ implies NC3−i (v) ≥ 1. Assume by contradiction that v ∈ Ci. Then, inequality (3) applied
o v yields the following contradiction:

|NCi (v)| · |C3−i| = 0 ≥ |NC3−i (v)| · (|Ci| − 1) ≥ 1. □

roperty 2. Let G = (V , E) be a graph and Π = {C1, . . . , Ck} be a generalized k-community structure of G. Consider i, j ∈ [[k]],
̸= j and v ∈ V . If Ci ⊆ N[v] and Cj ̸⊆ N[v], then v ̸∈ Cj.

Proof. Assume that v ∈ Cj. Then we have

|NCj (v)| · |Ci| < (|Cj| − 1) · |Ci| = (|Cj| − 1) · |NCi (v)|,

which also contradicts (3). □

If we have a community of size one, we obtain the following corollary.

Corollary 1. Let G = (V , E) be a graph and let Π = {C1, . . . , Ck} be a generalized k-community structure of G. If Ci = {u}
for some i ∈ [[k]] and u ∈ V , then for every neighbour v of u, we have Cj ⊆ N[v], where v ∈ Cj, j ̸= i.

In particular, if k = 2, the condition is also sufficient. Therefore, the next property characterizes those graphs admitting
a generalized 2-community structure, where at least one community is of size 1.

Property 3. A graph G = (V , E) admits a generalized 2-community structure {C1, C2} such that Ci = {u}, for some i ∈ [[2]]
and u ∈ V , if and only if every neighbour of u is universal.

Proof. The necessity follows from Corollary 1 with k = 2, and the sufficiency follows from the observation that
{{u}, V\{u}} is a generalized 2-community structure of G. □

The next property is used to show that a graph G = (V , E) does not admit a certain generalized 2-community structure
{C1, C2}.

Property 4. Let G = (V , E) be a graph and let C ′

1, C
′

2 ⊂ V such that C ′

1, C
′

2 ̸= ∅ and C ′

1 ∩ C ′

2 = ∅. Let U = V\(C ′

1 ∪ C ′

2)
nd v ∈ U. If v is not satisfied with respect to {C ′

1 ∪ (U ∩ N[v]), C ′

2 ∪ (U\N[v])}, then G admits no generalized 2-community
tructure Π = {C1, C2} such that (C ′

1 ∪ {v}) ⊆ C1 and C ′

2 ⊆ C2.

roof. Notice that by assumption |C ′

1|, |C
′

2| ≥ 1 and hence, |C1| ≥ 2. If v is not satisfied with respect to {C ′

1 ∪ (U ∩

[v]), C ′

2 ∪ (U\N[v])}, we know that

|NC ′
1∪U (v)|

|C ′

1 ∪ (U ∩ N[v])| − 1
<

|NC ′
2
(v)|

|C ′

2 ∪ (U\N[v])|
. (4)

Notice, that since v ∈ U = V\(C ′

1 ∪ C ′

2) and |C ′

1| ≥ 1, we have that |C ′

1 ∪ (U ∩ N[v])| > 1. Let Π = {C1, C2} be a partition
f V such that (C ′

1 ∪ {v}) ⊆ C1 and C ′

2 ⊆ C2. Since |NC1 (v)| ≤ |C1| − 1, we have

|NC1 (v)|
|C1| − 1

≤
|NC1 (v)| + |NU\C1 (v)|

|C1| − 1 + |(N(v) ∩ U)\C1|
=

|NC1∪U (v)|
|C1 ∪ (N(v) ∩ U)| − 1

. (5)

Now, since C1 ⊆ V\C ′

2 = C ′

1 ∪ U , we have C1 ∪ U = C ′

1 ∪ U , and (5) can be rewritten as

|NC1 (v)|
|C1| − 1

≤

|NC ′
1∪U (v)|

|C1 ∪ (N(v) ∩ U)| − 1
. (6)

From the fact that (C ′

1 ∪ {v}) ⊆ C1 and from (4) it then follows that

|NC1 (v)|
≤

|NC ′
1∪U (v)|

′
<

|NC ′
2
(v)|

′
. (7)
|C1| − 1 |C1 ∪ (N[v] ∩ U)| − 1 |C2 ∪ (U\N[v])|
162
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Since C2 ⊆ C ′

2 ∪ U and v ̸∈ C2, (7) becomes

|NC1 (v)|
|C1| − 1

<
|NC ′

2
(v)|

|C ′

2 ∪ (C2\N[v])|
=

|NC ′
2
(v)|

|C ′

2 ∪ (C2\N(v))|
. (8)

Also, since |NC ′
2
(v)| ≤ |C ′

2 ∪ (C2\N(v))| we have

|NC1 (v)|
|C1| − 1

<
|NC ′

2
(v)| + |NC2\C ′

2
(v)|

|C ′

2 ∪ (C2\N(v))| + |(N(v) ∩ C2)\C ′

2|
=

|NC2 (v)|
|C2|

. (9)

hus, v is not satisfied with respect to Π , and so Π is not a generalized 2-community structure. □

As mentioned above, we can use Property 4 to show that a graph G = (V , E) does not admit a certain generalized 2-
community structure {C1, C2}. Indeed, if some vertices have already been assigned to some sets C ′

1 and C ′

2, and if for some
nassigned vertex v ∈ U = V \{C ′

1, C
′

2}, inequality (3) fails even with respect to the partition {C ′

1∪(U∩N[v]), C ′

2∪(U\N[v])},
hen in order to possibly complete C ′

1, C
′

2 into a generalized 2-community structure (C1, C2) (i.e., C ′

1 ⊆ C1 and C ′

2 ⊆ C2),
has to be assigned to C2. When we apply Property 4 and add v and all its neighbours in U to Ci, as well as all
on-neighbours of v in U to C3−i, for i ∈ {1, 2}, we say that we test v on Ci.
Next, we consider true twins in generalized k-community structures.

roperty 5. Let u and v be two true twins in a graph G = (V , E) that are not universal. Then, in any generalized 2-community
tructure of G, u and v must belong to the same community.

roof. Consider a generalized 2-community structure Π = {C1, C2} of G. Assume by contradiction that u ∈ C1 and v ∈ C2.
ote that |C1| > 1, otherwise C1 ⊆ N[v] and since v is not universal, by Property 2 it would not be satisfied with respect
o Π . Similarly, |C2| > 1. Thus, Π must be a 2-community structure.

Since u and v are true twins, we have

|NC1 (u)| = |NC1 (v)| − 1 , and (10)

|NC2 (u)| = |NC2 (v)| + 1 . (11)

Furthermore, since C1 and C2 form a 2-community structure, we also have

|NC1 (u)|
|C1| − 1

≥
|NC2 (u)|

|C2|
, and (12)

|NC2 (v)|
|C2| − 1

≥
|NC1 (v)|

|C1|
. (13)

Now, by using (10) and (11), we can restate (12) as

|NC1 (v)| − 1
|C1| − 1

≥
|NC2 (v)| + 1

|C2|
.

On the other hand, |NC1 (v)| ≤ |C1| implies

|NC1 (v)|
|C1|

≥
|NC1 (v)| − 1

|C1| − 1
(14)

nd |NC2 (v)| + 1 ≤ |C2| implies

|NC2 (v)| + 1
|C2|

≥
|NC2 (v)|
|C2| − 1

. (15)

Since v is not universal, at least one of the inequalities (14) and (15) is strict. Since the vertices u and v are true twins
and we can swap their roles, we may assume that (14) is strict. Then, we have

|NC1 (v)|
|C1|

>
|NC1 (v)| − 1

|C1| − 1
≥

|NC2 (v)| + 1
|C2|

≥
|NC2 (v)|
|C2| − 1

,

hich contradicts (13). □

Our next property concerns k-community structures. It gives a necessary condition for a graph (with no isolated
ertices) to admit a k-community structure.

roperty 6. If a graph G = (V , E), without isolated vertices, admits a k-community structure Π , then it has a matching of
ize k.
163
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Proof. No community in Π can contain a vertex with no neighbours in its own community. Then the vertex would
ave at least one neighbour in another community and could therefore not be satisfied with respect to Π . Then, for each
ommunity Ci ∈ Π , i ∈ [[k]], there is at least one edge with both endpoints in Ci. By picking one such edge in each
ommunity, we construct a matching of size k in G. □

Finally, we show that given an integer k ≥ 2, a graph G = (V , E) such that |V | ≥ k and a k-partition Π of the vertex
set of the graph, we can check in time O(k|V |+ |E|) whether Π forms a (connected) (generalized) k-community structure
of G.

Lemma 1. Let G = (V , E) be a graph such that |V | ≥ k, for some given integer k ≥ 2. Let Π = {C1, . . . , Ck} be a k-partition
of V . Then, we can check in O(k(|V | + |E|)) time whether Π forms a (connected) (generalized) k-community structure of G.

roof. We start by computing the size of each set Ci in Π , for i ∈ {1, . . . , k}. While doing so, we also mark which set
ach vertex belongs to and check if each set has at least two vertices. This can all be done in time O(|V |). Next, for each
ertex we need to initialize k counters and scan its neighbourhood to count the number of neighbours it has in each
ommunity. Since for each vertex this can be done in time O(k + d(v)), overall this can be done in time O(k|V | + |E|).
hen, for each vertex v and each community Ci, for i ∈ {1, . . . , k}, we check whether (3) is satisfied by v with respect to

community Ci. This can be done in time O(k|V |). If we want to check whether a (generalized) k-community structure is
onnected, we check whether each set in Π induces a connected component by using either BFS or DFS. This can be done
n time O(k(|V | + |E|)). Hence, the claim follows. □

. (Generalized) k-community structures in trees and forests

In this section, we prove that for every integer k ≥ 2, every tree T = (V , E) with at least k vertices admits a connected
generalized k-community structure, which can be found in time O(k2 · |V |

2). Then, we give a necessary and sufficient
ondition for a tree T = (V , E) to admit a k-community structure. Furthermore, we show that a k-community structure
f T , if it exists, can be found in time O(k2 · |V |

2). We then generalize these results to forests. Notice that in forests the
onnectivity of the communities is not necessarily preserved. This extends a result from [3,9], where the authors give a
olynomial time algorithm for finding a 2-community structure in trees.
We first introduce some definitions. Let k ≥ 2 be an integer and Π = {C1, . . . , Ck} be a k-partition of a graph G. The size

tuple of Π is the k-tuple (s1, . . . , sk) whose elements correspond exactly to the elements from the multiset {|Ci| : Ci ∈ Π}

and such that si ≤ si+1 for all i ∈ [[k−1]]. Note that {|Ci| : Ci ∈ Π} is a multiset since we allow sets in Π to have the same
size. A connected k-partition Π of G is said to be uniform if its size tuple is lexicographically largest among all connected
k-partitions of G. Let S = (s1, . . . , sk) and S ′

= (s′1, . . . , s
′

k) be two k-tuples. We write S < S ′ if there exists j ∈ [[k]] such
that sj < s′j and si = s′i for all 1 ≤ i < j. For simplicity, for two k-partitions Π and Π ′ of G with size tuples S and S ′,
respectively, we write Π < Π ′ whenever S < S ′.

We start with a simple observation regarding trees and connected k-partitions. Given a connected k-partition, if a
vertex v in a set has two neighbours u and w in another set C , then v together with a path connecting u and w in C
(which exists since C induces a connected subgraph) would induce a cycle. Since a tree does not contain any cycle, we
have the following.

Observation 1. Let T = (V , E) be a tree, k ≥ 2 an integer and Π = {C1, . . . , Ck} a connected k-partition of T . Let v ∈ Ci, for
some i ∈ [[k]]. Then v has at most one neighbour in Cj, for any j ∈ [[k]] \ {i}.

We will now show that every tree T = (V , E), such that |V | ≥ k, admits a connected generalized k-community
structure, which can be found in time O(k2 · |V |

2) (see Theorem 1). We do so in two main steps. First, we prove that if
there exists a vertex in V that does not satisfy (3) with respect to some connected k-partition Π of T , then we can update
Π in linear time into a connected partition Π ′ of T such that Π < Π ′ (see Lemma 2). Then, we present a polynomial
upper bound on the number of times one can apply such an update, which results in a polynomial-time algorithm.

Lemma 2. Let T = (V , E) be a tree such that |V | ≥ k, for some integer k ≥ 2. Let Π be a connected k-partition of T and let
v ∈ V be a vertex that is not satisfied with respect to Π . Then there exists a connected k-partition Π ′ of T such that Π < Π ′,
that can be computed in time O(|V |).

Proof. Let Π = {C1, . . . , Ck} be a connected k-partition of T . Assume that v ∈ Ci, for some i ∈ [[k]]. Then, by Observation 1,
the following holds for v and some Cj, for i ̸= j ∈ [[k]]:

|Ci \ {v}| = |Ci| − 1 ≥ |NCi (v)| · |Cj| + 1 . (16)

Notice that |NCi (v)| ≥ 1, since otherwise the inequality becomes |Ci| ≥ 2, which in turn implies |NCi (v)| ≥ 1 since the
k-partition is connected. Therefore Eq. (16) can be rewritten as

|Ci \ {v}|
≥ |Cj| +

1
> |Cj|.
|NCi (v)| |NCi (v)|
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Fig. 1. In part (a) we illustrate a tree T and a connected 3-partition Π , where vertex v ∈ C2 is not satisfied with respect to Π .
n part (b) we illustrate the forest induced by the vertices in C2 \ {v} and a tree Tv such that |V (Tv)| > |C3|.
n part (c) we illustrate the 2-partition Π ′

= (Π \ {C2, C3}) ∪ {A, B}.

Now observe that by removing vertex v from Ci, we break Ci into at least one and at most |NCi (v)| connected
omponents. Last inequality tells us that the average size of these components is strictly larger than |Cj|. By the pigeonhole
rinciple, one of these components, say Tv verifies |V (Tv)| ≥ |Cj|. In particular, we have |Ci| > |Cj|.
We are now going to transform P into another connected k-partition Π ′ of T such that Π < Π ′.
Let A = (Ci \ V (Tv)) ∪ Cj and B = V (Tv). We define Π ′ in the following way: Π ′

= (Π \ {Ci, Cj}) ∪ {A, B}. See Fig. 1 for
n illustration with k = 3.
Notice that T [A] induces a connected subgraph of T since v is adjacent to some vertex in Cj. Then, Π ′ is a connected

-partition of T , since Π is a connected k-partition of T and both T [A] and T [B] induce connected subgraphs of T .
urthermore, we observe the following:

• since V (Tv) ⊂ Ci, we have |A| = |Ci| − |V (Tv)| + |Cj| > |Cj|;
• it follows from the argument above that |B| = |V (Tv)| > |Cj|.

hen, let S and S ′ be the size tuples of Π and Π ′, respectively. Since |Cj| < |A|, |B| and |Cj| < |Ci|, we conclude that S < S ′.
ence, we have that Π < Π ′. Furthermore, Π ′ can be obtained in time O(|V |). □

Lemma 2 implies the following corollary.

orollary 2. Let T = (V , E) be a tree such that |V | ≥ k, for some integer k ≥ 2. Let Π = {C1, . . . , Ck} be a connected uniform
-partition of T . Then, Π is a connected generalized k-community structure of T .

roof. Assume by contradiction that Π does not form a generalized k-community structure of T . Thus, there exists some
∈ V that does not satisfy (3) with respect to Π . Then, Lemma 2 implies that there exists a k-partition Π ′ of T such that
< Π ′. A contradiction to the assumption that Π is a connected uniform k-partition of T . □

Let us call the transformation from a k-partition Π to a k-partition Π ′ of T , such that Π < Π ′, as described at the end of
he proof of Lemma 2 an Improvement Procedure. Then, we define an Improvement Algorithm as follows. Assume, that
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Fig. 2. A (k, n)-tuple t and an (x, y)-change t ′ of t of order δ and a graphical representation of the five cases considered in the proof of Lemma 4.

we are given a positive integer k, a tree T = (V , E) such that |V | ≥ k, and a connected k-partition Π of T . While there exists
∈ V that is not satisfied with respect to Π , we apply the Improvement Procedure. In this way, we obtain a connected
eneralized k-community structure of T . The algorithm terminates, since at each iteration of the while loop, the connected
-partition of T gets updated and its size-tuple increases lexicographically. Next, we show that the algorithm runs in time
(k2 · |V |

2) by presenting a polynomial upper bound on the number of iterations of the Improvement Algorithm.
To this end, let us introduce several notions. For two positive integers k, n ≥ 2, a (k, n)-tuple t is an ordered tuple of

non-negative integers such that
∑k

i=1 t[i] = n. Notice that, given a connected k-partition Π = {C1, . . . , Ck} of a tree
= (V , E) on n vertices, the size tuple of Π is a (k, n)-tuple. Let t be a (k, n)-tuple, x, y ∈ [[k]] such that x < y and

[x] + 2 ≤ t[y], and δ ∈ [[t[y] − t[x] − 1]]. An (x, y)-change of a (k, n)-tuple t of order δ is a (k, n)-tuple whose elements
correspond exactly to the elements of the multiset {t[i] : i ∈ [[k]] \ {x, y}}∪ {t[x]+ δ, t[y]− δ}. We say that a (k, n)-tuple t ′
is a 2-change of t of order δ if t ′ is an (x, y)-change of t of order δ, for some x < y ∈ [[k]] (see Fig. 2 for an illustration). If δ

is clear from the context, we may simply say a 2-change of t . Since t is a (k, n)-tuple, then 2-change of t is a (k, n)-tuple
as well.

Observe that if t and t ′ are (k, n)-tuples such that t < t ′ and t and t ′ share all but two of their elements (disregarding
their positions in the tuples), then t ′ is a 2-change of t . For completeness, we state this formally.

Lemma 3. Let t and t ′ be two (k, n)-tuples that differ in exactly two elements and such that t < t ′. Then t ′ is a 2-change of t.

Proof. By definition, t < t ′ implies that there exists j ∈ [[k]] such that t[j] < t ′[j] and t[i] = t ′[i], for all 1 ≤ i < j.
Then t ′[j] = t[j] + δ, for some δ ≥ 1. Furthermore, by assumption t and t ′ differ in exactly two elements and since
k∑

i=1

t[i] =

k∑
i=1

t ′[i] = n, thus there must exist some j′ ∈ [[k]] such that t ′[j′] = t[j′] − δ. Moreover, since t[i] = t ′[i], for all

1 ≤ i < j, we have j < j′ and t[j′] = t ′[j′] + δ ≥ t ′[j] + δ = t[j] + δ + δ = t[j] + 2δ ≥ t[j] + 2. Hence, the elements of t ′
exactly correspond to the elements of the multiset {t[i] : i ∈ [[k]] \ {j, j′}} ∪ {t[j] + δ, t[j′] − δ}, where j, j′ ∈ [[k]] are such
that j < j′ and t[j] + 2 ≤ t[j′]. Thus, t ′ is a 2-change of t of order δ. □

The Improvement Procedure modifies a connected k-partition Π = {C1, . . . , Ck} of T in the following way. If there
exists a vertex v ∈ V in some community Ci, for some i ∈ [[k]], which does not satisfy Eq. (2) (resp. Eq. (3)) for some
community Cj ∈ Π (which is possible only if |(|Ci| − |Cj|)| ≥ 2), i ̸= j ∈ [[k]], we transform Π into another connected
k-partition Π ′ of T such that Π < Π ′, by moving some vertices from community Ci to community Cj. Notice that this
transformation modifies the sizes of exactly two communities, namely Ci and Cj. Let S and S ′ be the size tuples of the
k-partitions Π and Π ′, respectively. By Lemma 3, we know that S ′ is a 2-change of S. Since we do this transformation in
Lemma 2 as long as there exists a vertex which is not satisfied, this actually corresponds to a sequence of 2-changes.

Next, we present an upper bound on a sequence of 2-changes which implies in an upper bound on the number of
iterations of our Improvement Algorithm. Let t be a (k, n)-tuple and let t ′ be a 2-change of t of order δ. We may assume
without loss of generality, that δ ≤ (t[y] − t[x])/2. Indeed, assume that δ > (t[y] − t[x])/2. Let δ′

= t[y] − t[x] − δ.
Since (t[y] − t[x])/2 < δ ≤ t[y] − t[x] − 1, we have δ′

= t[y] − t[x] − δ < (t[y] − t[x])/2 and 1 ≤ δ′. We also have
t[x] + δ′

= t[y] − δ, t[y] − δ′
= t[x] + δ. Hence, if δ > (t[y] − t[x])/2 and t ′ is a 2-change of t of order δ, we can define

δ′ < (t[y] − t[x])/2 as described above such that t ′ is a 2-change of t of order δ′.
Let wj(t) =

∑j
i=1 t[i], i.e. the sum of the first j elements of a (k, n)-tuple t . We show that if t ′ is a 2-change of t of

order δ, then w (t) ≤ w (t ′), for all j ∈ [[k]].
j j
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Lemma 4. Let t be a (k, n)-tuple and let t ′ be a 2-change of t of order δ. Then wj(t) ≤ wj(t ′), for all j ∈ [[k]].

roof. Since t ′ is a 2-change of t of order δ, we know by definition that there exists x < y ∈ [[k]] such that
′

= {t[i] : i ∈ [[k]] \ {x, y}} ∪ {t[x] + δ, t[y] − δ}. Let x′ be the smallest index such that t ′[x′
] = t[x] + δ and y′ be

he largest index such that t ′[y′
] = t[y]− δ. Recall that we may assume without loss of generality that δ ≤ (t[y]− t[x])/2,

r equivalently t[x] + δ ≤ t[y] − δ, and thus, since t ′ is ordered, we have x′ < y′.
We want to show that wj(t) ≤ wj(t ′), for all j ∈ [[k]]. We distinguish five cases depending on the index j (see Fig. 2).

ase 1. 1 ≤ j ≤ x − 1. Since t[j] = t ′[j], we have wj(t) = wj(t ′).

Case 2. x ≤ j ≤ x′
− 1. In this case, we have

wj(t ′) = wj(t) − t[x] + t[j + 1] ≥ wj(t) ,

since t[j + 1] ≥ t[x].

Case 3. x′
≤ j ≤ y′

− 1. We have

wj(t ′) = wj(t) − t[x] + t ′[x′
] = wj(t) − t[x] + t[x] + δ = wj(t) + δ.

Since δ ≥ 1 we obtain, wj(t) ≤ wj(t ′).

Case 4. y′
≤ j ≤ y − 1. In this case, we have

wj(t ′) = wy′−1(t ′) + t ′[y′
] +

j∑
i=y′+1

t ′[i]

= wy′−1(t) + δ + t ′[y′
] +

j∑
i=y′+1

t ′[i] = wy′−1(t) + δ + t[y] − δ +

j−1∑
i=y′

t[i]

= wy′−1(t) + t[y] +

j−1∑
i=y′

t[i] ≥ wj−1(t) + t[j] = wj(t) ,

where wy′−1(t ′) = wy′−1(t) + δ follows from the previous case and t[j] ≤ t[y] since j < y and t ′ is ordered.

Case 5. y ≤ j ≤ k. In this case, we have

wj(t ′) = wj(t) − t[x] − t[y] + (t[x] + δ) + (t[y] − δ) = wj(t).

Hence, for all j ∈ [[k]], we have wj(t) ≤ wj(t ′), as claimed. □

In the next lemma, we derive an upper bound on wj(t), for every j ∈ [[k]].

Lemma 5. Let k and n be two positive integers. Let t be a (k, n)-tuple. Then wj(t) ≤ j · n
k , for all j ∈ [[k]].

Proof. Assume by contradiction that there exists j ∈ [[k]] such that wj(t) > j · n
k . If j = k, then t would not be a (k, n)-tuple.

So we may assume that j < k. Since wj(t) =
∑j

i=1 t[i] > j · n
k , there must exist x ∈ [[j]] such that t[x] > n

k . We also have
that

∑k
i=j+1 t[i] = n − wj(t) < n − j · n

k = (k − j) ·
n
k , and thus, there exists y ∈ [[k]] \ [[j]] such that t[y] < n

k . However,
since x < y and t[x] > t[y], this contradicts the fact that t is an ordered tuple. □

Lemma 6. Let k and n be two positive integers. Let S = ⟨t1, . . . , tℓ⟩ be a sequence of ordered (k, n)-tuples such that, for every
two consecutive tuples ti−1 and ti in S , it holds that ti is a 2-change of ti−1. Then ℓ ≤ 1 +

k+1
2 · n.

roof. For all j ∈ [[k]], we define a set Sj of (k, n)-tuples ti ∈ S , such that i > 1 and ti is an (j, j′)-change of ti−1, for
< j′ ∈ [[k]], and j is maximum with this property. By the choice of j, we have that every tuple in S \ {t1} belongs to
xactly one set Sj, for some j ∈ [[k]]. We prove by induction on the length ℓ of S that |Sj| ≤ wj(tℓ), for every j ∈ [[k]]. If S
ontains at most one tuple, then |Sj| = 0, for all j ∈ [[k]], and the claim holds. Suppose now that the claim remains true
henever the length of S is less than ℓ, for some ℓ ∈ N.
We define S ′

= S \ {tℓ} and, similarly as above, the set S ′

j for all j ∈ [[k]], is the set of all (k, n)-tuples ti ∈ S ′, such
hat i > 1 and ti is an (j, j′)-change of ti−1, for j < j′ ∈ [[k]], and j is maximum with this property. Let x < y ∈ [[k]] and
∈ [[t[y] − t[x] − 1]] such that tℓ is an (x, y)-change of tℓ−1 of order δ. Without loss of generality, we may assume x to be
aximum with this property. By the choice of x, we have tℓ ∈ Sx. Recall that we may assume, without loss of generality,

hat δ ≤ (tℓ−1[y]− tℓ−1[x])/2. Also notice that for all j ∈ [[k]]\ {x}, it holds that Sj = S ′

j , and hence the induction hypothesis
and Lemma 4 imply that |Sj| = |S ′

j | ≤ wj(tℓ−1) ≤ wj(tℓ). By the choice of x, we have that tℓ−1[x] < tℓ−1[x+1]. In particular,
we can deduce that t [x] = min{t [x + 1], t [x] + δ} > t [x]. We also note that t [i] = t [i], for all x > i ∈ [[k]].
ℓ ℓ−1 ℓ−1 ℓ−1 ℓ ℓ−1
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Fig. 3. A tree T and a generalized 3-community structure Π ′ returned by the Improvement Algorithm represented by red bags and a 3-community
tructure Π represented by blue bags which is lexicographically larger than Π ′ . (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

onsequently, |Sx| = |S ′
x| + 1 ≤ wx(tℓ−1) + 1 = wx−1(tℓ−1) + tℓ−1[x] + 1 ≤ wx−1(tℓ−1) + tℓ[x] = wx(tℓ), which proves the

nduction hypothesis.
We can now derive an upper bound on the length ℓ of S as follows:

ℓ = 1 +

k∑
j=1

|Sj|

≤ 1 +

k∑
j=1

wj(tℓ) (see above)

≤ 1 +

k∑
j=1

j ·
n
k

(by Lemma 5)

= 1 +
k + 1
2

· n . □

This leads to the following result.

heorem 1. Let k ≥ 2 be an integer and let T = (V , E) be a tree such that |V | ≥ k. Then, there exists a connected generalized
-community structure of T that can be computed in O(k2 · |V |

2) time.

roof. Notice that a connected k-partition Π of T can simply be obtained by deleting any k − 1 edges. We then apply
he Improvement Algorithm starting with Π . If all the vertices of T are satisfied with respect to Π , we are done.
therwise, we apply the ‘‘while’’ loop from the Improvement Algorithm to compute a connected k-partition Π ′ of
such that Π < Π ′. The sequence of size tuples corresponding to the successive partitions obtained that way is a

exicographic sequence of (k, n)-tuples. We know from Lemma 3 that for every two consecutive (k, n)-tuples t and t ′
n the sequence, where t < t ′, it holds that t ′ is a 2-change of t . By Lemma 6, the size of such a sequence is at most
+

k+1
2 · n = 1+

k+1
2 · |V | = O(k|V |), and so is therefore the number of iterations of the Improvement Algorithm. Then,

y Lemmas 1 and 2 each iteration can be carried out in time O(k|V |) in trees. We conclude that the complexity of the
mprovement Algorithm is O(k2 · |V |

2). Hence, the statement follows. □

Notice that the Improvement Algorithm does not necessarily return a uniform k-partition. To illustrate this, in Fig. 3
e present a tree T and a connected 3-community structure Π ′, represented by red bags, that can be obtained by the

mprovement Algorithm (it suffices to start with Π ′, which the algorithm does not change). A different connected 3-
ommunity structure Π , represented by blue bags, is lexicographically larger than Π ′. This implies that Π ′ is not uniform.
ence, it would be interesting to consider the following open question.

What is the time complexity of computing a connected uniform k-partition of a tree?

We now give a necessary and sufficient condition for a tree to admit a k-community structure for any integer k ≥ 2,
nd show how to obtain it, if it exists, in linear time.

heorem 2. Let k ≥ 2 be an integer. A tree T admits a k-community structure if and only if T contains a matching of size k.
urthermore, if such a k-community structure exists, it can be found in time O(k2 · |V |

2).
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Proof. By Property 6, we know that if T admits a k-community structure, then T contains a matching of size k. Conversely,
assume that T contains a matching M of size k, for k ≥ 2. We construct a connected k-partition Π = {C1, . . . , Ck} of T such
that |Ci| ≥ 2 for i ∈ [[k]] as follows. The endpoints of the k edges inM define the k initial subsets of the partition, where two
ertices belong to the same subset if and only if they are endpoints of a same edge in M . We then assign iteratively each
emaining vertex to a subset, chosen in such a way that each subset always induces a connected subgraph. This results in
connected k-partition Π = {C1, . . . , Ck} of T such that |Ci| ≥ 2 for i ∈ [[k]]. Hence, similarly as in the proof of Theorem 1,
e can use the Improvement Algorithm to obtain a connected k-community structure of T in time O(k2 · |V |

2). □

Now, let us consider forests. Theorem 1 can be extended to forests in a rather straightforward way. Indeed, let
= (V , E) be a forest with |V | ≥ k and containing m connected components T1, . . . , Tm. If m ≥ k, then C1 =

(T1), . . . , Ck−1 = V (Tk−1), Ck = V (Tk) ∪ · · · ∪ V (Tm) forms a generalized k-community structure. So we may assume
hat m < k. Let T1, . . . , Tm′ , m′ < m, be the connected components of F containing each exactly one vertex. We set
1 = V (T1), . . . , Cm′ = V (Tm′ ), and in order to find a generalized k-community structure in F , it is enough to find integers
1, s2, . . . , sm−m′ such that s1 + s2 + · · · + sm−m′ = k − m′ and s1 ≤ |V (Tm′+1)|, . . . , sm−m′ ≤ |V (Tm)|. Such integers always
exist since k − m′

≤ |V | − m′, and, they can be determined in linear time. Then, we only need to compute a generalized
sj-community structure in Tm′+j, for each j ∈ [[m−m′

]]. This can be done using Theorem 1. Thus, we obtain the following.

Corollary 3. Let F = (V , E) be a forest such that |V | ≥ k, for some integer k ≥ 2. Then, F admits a generalized k-community
structure that can be computed in time O(k2 · |V |

2).

Theorem 2 can also be extended to forests as follows.

Theorem 3. Let k ≥ 2 be a positive integer. Let F = (V , E) be a forest and let I ⊆ V be the set of isolated vertices of F . Then,
F admits a k-community structure if and only if F contains a matching M such that |M| + ⌊|I|/2⌋ ≥ k. Furthermore, if such a
k-community structure exists, it can be found in time O(|V |

2).

Proof. We first show necessity. Let Π = {C1, . . . , Ck} be a k-community structure in F and let M ⊆ E be empty. For
every community Ci, i ∈ {1, . . . , k}, such that F [Ci] contains at least one edge, we assign one edge of F [Ci] to M . If r
communities induce graphs with at least one edge, then M is a matching of size r . Let ℓ = k − r be the number of
communities that induce edgeless graphs. Recall that every community contains at least 2 vertices. Observe that, if Cj, for
any j ∈ {1, . . . , k}, is a community inducing an edgeless graph and if v ∈ Cj, then v is isolated in F , otherwise v cannot
be satisfied with respect to Π . We conclude that F contains at least 2ℓ isolated vertices. Hence, F contains a matching M
such that |M| + ⌊|I|/2⌋ ≥ k.

We now show sufficiency. If k ≤ ⌊|I|/2⌋, it is enough to partition I into k sets C1, . . . , Ck, each containing at least two
vertices, and to add the remaining vertices of F to one of these sets. Since there are no edges between any two distinct
communities, this gives us a k-community structure.

So we may assume now that k > ⌊|I|/2⌋. We start by creating k empty sets C1, . . . , Ck. All along our procedure, we
make sure that for every vertex v ∈ Ci, it holds that

|NCi (v)|
|Ci| − 1

≥
|NCj (v)|

|Cj|
for all i, j ∈ [[k]], i ̸= j . (17)

Let ℓ = ⌊|I|/2⌋. If ℓ ≥ 1, we assign the vertices of I to the sets C1, . . . , Cℓ, such that every Ci with i ∈ [[ℓ]] contains at
least 2 vertices of I . Notice that Eq. (17) still holds, since after assigning the vertices of I to the sets C1, . . . , Cℓ, each Ci,
for i ∈ [[ℓ]], consists of a subset of connected components of T . If ℓ = 0, all sets Ci, i ∈ [[k]], remain empty at this stage.
Recall that by assumption, F contains a matching M of size at least k − ℓ. Let M be a matching in F of size exactly k − ℓ.

Then, if there exists no connected component T = (V (T ), E(T )) of F\I such that T verifies |E(T ) ∩ M| = 1, and there
xists a connected component T ′

= (V (T ′), E(T ′)) of F\I such that T ′ that verifies |E(T ′) ∩ M| = 0, we remove one edge
f the matching M from some connected component T ′′ of F\I that verifies |E(T ′′) ∩ M| ≥ 2 (such a T ′′ exists since
M| = k − ℓ > 0), and add some edge of T ′ to M instead. Note that M remains a matching. After this procedure, also
otice that at this point, either there is a connected component T = (V (T ), E(T )) of F such that T verifies |E(T ) ∩ M| = 1,
r all connected components T of F \ I verify |E(T ) ∩ M| ≥ 2.
For every connected component T = (V (T ), E(T )) of F such that |E(T ) ∩ M| = 1, if such a component exists, we add

very vertex of T to a set Cj such that j is the smallest possible index from the set {ℓ + 1, . . . , k} and Cj is still empty.
otice that such a set Cj always exists, since M has size k − ℓ. Furthermore, notice that after assigning every vertex of T
o Cj, the set Cj contains at least 2 vertices and (17) is satisfied. Then, for connected components with |E(T ) ∩ M| = p ≥ 2,
e use Theorem 2 to compute a connected p-community structure {P1, . . . , Pp} of T in time O(k2 · |V (T )|2), and assign
he vertices of each set Pi, i = 1, . . . , p, to a different set Cj that is still empty, for j ∈ {ℓ + 1, . . . , k}. Again, such sets
j always exist, since M has size k − ℓ. Furthermore, (17) is satisfied, since {P1, . . . , Pp} is a p-community structure of T .
hen, up to this point we have that every set Ci, i ∈ [[k]], contains at least two vertices and that (17) is satisfied.
In order to assign the remaining vertices (either isolated vertices or connected components of T containing no edges

f M) to the sets C1, . . . , Ck, we distinguish two cases. If ℓ ≥ 1 or if there exists at least one connected component
= (V (T ), E(T )) of F that verifies |E(T ) ∩ M| = 1, we simply add all of the unassigned vertices to C and inequality (17)
1
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Fig. 4. An example of a threshold graph G and a 2-community structure Π = {C1, C2} in G constructed as described at the beginning of the proof
f Theorem 4.

emains satisfied, since in this case C1 consists of a subset of connected components of F . If ℓ = 0 (i.e. |I| = 0 or |I| = 1)
and no connected component T = (V (T ), E(T )) of F verifies |E(T ) ∩ M| = 1, there exists at most one unassigned vertex,
namely an isolated vertex, say v. If so, we simply add it to a community among C1, . . . , Ck containing the smallest number
of vertices, say Ci. Let us denote C ′

i = Ci ∪ {v}. Then, for all vertices u ∈ Ci and all j ∈ [[k]]\i, we have |NC ′
i
(u)| ≥ |NCj (u)|

(recall that we used Theorem 2 to compute a connected community structure and hence every vertex in T has at most

one neighbour outside of its own community), and |C ′

i | − 1 = |Ci| ≤ |Cj|. Therefore, inequality
|NC ′

i
(u)|

|C ′
i |−1 ≥

|NCj (u)|

|Cj|
still holds.

Let us now analyse the complexity of our procedure described above. Computing I and M takes linear time, and so
do the first steps of the algorithm that assign the vertices of I and the connected components of F intersecting M on a
single edge to some sets Ci, i ∈ {1, . . . , k}. Let T1, . . . , Tt denote the connected components of F containing at least 2
edges of M , and let pi = |E(Ti) ∩ M| for i = 1, . . . , t . Since for each connected component Ti, for i ∈ [[t]] we can compute
a pi-community structure in time O(k2 · |V (T )|2), the claimed complexity follows. □

4. Threshold graphs

In this section, we focus on the existence of a (generalized) 2-community structure in threshold graphs. A threshold
graph is a graph that can be constructed from the one-vertex graph by repeatedly adding an isolated vertex or a universal
vertex. An equivalent definition (see [16]) is that it is a graph G = (V , E), where V can be partitioned into a clique
Q = {v1, . . . , vq} and a stable set S = {w1, . . . , ws} such that N(wi) ⊆ N(wi+1) for i ∈ [[s−1]] (and therefore also, without
loss of generality, N(vi) ⊇ N(vi+1) for i ∈ [[q − 1]]). Notice that a threshold graph G = (V , E), which is not connected,
corresponds to the union of a connected threshold graph H = (VH , E) and a set I of isolated vertices.

Let us start by showing that every threshold graph G admits a generalized 2-community structure. Observe that in any
threshold graph, N(w1) corresponds to the set of all universal vertices of G. Notice that if G does not contain any universal
vertex, then G is disconnected and w1 is an isolated vertex. Consequently, as pointed out in Property 3, every threshold
graph containing at least two vertices admits a generalized 2-community structure Π = {{w1}, V\{w1}}.

For 2-community structures, we obtain the following for the case of connected threshold graphs.

Theorem 4. Let G = (V , E) be a connected threshold graph with n ≥ 4 vertices. Then, G admits a 2-community structure if
and only if G is not isomorphic to the star Sn−1. Furthermore, if it exists, a 2-community structure can be found in time O(|E|).

Proof. Necessity follows form the fact that the star Sn−1 does not admit any 2-community structure.
We now show sufficiency. Since by assumption G is connected and not isomorphic to the star Sn−1, it follows that q > 1.

We claim that Π = {C1, C2} with C1 = {v1, w1, . . . , wk}, C2 = {v2, . . . , vq, wk+1, . . . , ws} and k = max{i : d(wi) ≤
n−1
i }

s a 2-community structure in G. In Fig. 4, we show an example of such a 2-community structure Π = {C1, C2} on a
hreshold graph G on 10 vertices with q = s = 5 and k = max{i : d(wi) ≤

9
i } = 3.

In order to show that the partition Π = {C1, C2} is a 2-community structure, we need to show that |C1| ≥ 2, |C2| ≥ 2,
nd that all vertices are satisfied with respect to Π . First, notice that we may assume without loss of generality that
(ws) = q. Indeed, if d(ws) < q, then vq has no neighbour in S, and it may then be considered as a vertex of S, adjacent
o all the vertices in Q . This also allows us to assume that s ≥ 1 and hence, that w1 actually exists. Second, we trivially
now that 1 ∈ {i : d(wi) ≤

n−1
i }. Therefore, |C1| ≥ 2. Assume now that s ∈ {i : d(wi) ≤

n−1
i }. Then, d(ws) = q ≤

n−1
s ,

hich means that q · s ≤ n − 1 = q + s − 1. It is easy to see that the only possibility for this to happen, knowing that
q ≥ 2 and s ≥ 1, is that s = 1. Since s = 1 and d(ws) = q, we conclude that G is a clique. In this case q ≥ 3 and we have

= {v , w }, C = {v , . . . , v } and Π is a 2-community structure (notice that |C | ≥ 2 since q = n − s ≥ 3).
1 1 1 2 2 q 2
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Assume now that s ̸∈ {i : d(wi) ≤
n−1
i }, which directly implies that |C2| ≥ 2. We need to prove that all vertices

are satisfied with respect to Π . We start with the vertices in S. Recall that they all have exactly one neighbour in C1,
namely v1.

• wk:
|NC2 (wk)|

|C2|
=

d(wk)−1
n−k−1 ≤

n−1
k −1

n−k−1 =
1
k =

|NC1 (wk)|
|C1|−1 ;

• wi for i < k: it immediately follows from the previous case, since |NC2 (wi)| ≤ |NC2 (wk)| and |NC1 (wi)| = |NC1 (wk)|;

• wk+1:
|NC2 (wk+1)|

|C2|−1 =
d(wk+1)−1
n−k−2 >

n−1
k+1 −1
n−k−2 =

1
k+1 =

|NC1 (wk+1)|
|C1|

;
• wi for i > k + 1: it immediately follows from the previous case, since |NC2 (wi)| ≥ |NC2 (wk+1)| and |NC1 (wi)| =

|NC1 (wk+1)|.

Let us now consider the vertices in Q . Vertex v1 is satisfied, since it is universal. Next, all vertices in Q ∩ C2 that are
djacent to wk+1 are also satisfied, since they are adjacent to all the vertices in C2. Consider now vertex vq. From the
bove, we may assume that it is not adjacent to wk+1 (and hence, it has exactly one neighbour in C1, namely v1). Notice
hat, since wk+1 has only neighbours in the clique, we have q ≥ d(wk+1) > n−1

k+1 =
q+s−1
k+1 , which implies that q · k > s− 1.

ence, we obtain the following:
|NC2 (vq)|
|C2| − 1

≥
q − 1

q + s − k − 2
=

(q − 1)(k + 1)
(q + s − k − 2)(k + 1)

=
qk + q − k − 1

(q + s − k − 2)(k + 1)

>
s − 1 + q − k − 1

(q + s − k − 2)(k + 1)
=

1
k + 1

=
|NC1 (vq)|

|C1|
.

Thus, vq is satisfied with respect to Π . Finally, all vertices vi, for i < q and which are not adjacent to wk+1, are also
satisfied, since |NC2 (vi)| ≥ |NC2 (vq)| and |NC1 (vi)| = 1. So we may apply the same arguments as for vq.

Computing the degrees of G and determining k = max{i : d(wi) ≤
n−1
i } can be done in time O(|E|) and thus, every

onnected threshold graph with at least 4 vertices except stars admits a 2-community structure that can be found in time
(|V | + |E|). Notice that since G is connected, we have |E| ≥ |V | − 1 and so O(|V | + |E|) = O(|E|) in this context. □

Now, let us consider a disconnected threshold graph G = (V , E), i.e. a connected threshold graph H = (VH , E) and a set
of isolated vertices. Assume that G contains at least 4 vertices. If |I| ≥ 2, say u, v ∈ I , G admits a 2-community structure
= {{u, v}, VH ∪ (I \ {u, v})}.
Let us now consider the case when |I| = 1. In this case, the existence of a 2-community structure seems less trivial,

nd there exist infinite families of such graphs that do not admit any 2-community structure. We present two of them
ere.
Let a, b, s ∈ N+. The graph Ga,b,s = (Q ∪ S ∪ {u}, E) (see Fig. 5) is defined as follows:

(i) Q = {v1, . . . , vq} is a clique, S = {w1, . . . , ws} is a stable set, u is an isolated vertex.
The vertices of the clique are partitioned into two sets: Q = A ∪ B with |A| = a and |B| = b:

(ii) The vertices in A = {v1, . . . , va} are universal vertices in the graph G \ {u}.
(iii) The vertices B = {va+1, . . . , vq} have no neighbour in S.

Notice, that B could be empty.

Theorem 5. For a, b, s ∈ N+, such that b < a+s
s , Ga,b,s = (Q ∪ S ∪ {u}, E) does not admit any 2-community structure.

Proof. Assume that Ga,b,s admits a 2-community structure Π = {C1, C2}. First, note that since the vertices in B are
rue twins with at least one non-neighbour (u), and by Property 5 we conclude that they must belong to the same
171
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Fig. 6. The graph Gp,l . Exactly one of the dotted edges exists.

community. Moreover, if u ∈ Ci for some i ∈ 1, 2, Property 2 implies that v1, . . . , va ∈ C3−i. Without loss of generality, let
v1, . . . , va ∈ C1 and u ∈ C2. Next, Property 1 implies that w1, . . . , ws ∈ C1. Finally, since by definition we need to have
that |C2| ≥ 2, we conclude that all vertices in B belong to C2.

The vertices in sets A and S as well as vertex u are trivially satisfied with respect to the partition {C1, C2} constructed
above. However, in order for vertices in B to satisfy (2) we must have:

b − 1
b

≥
a

a + s
. (18)

Since by the assumption b < a+s
s , (18) is not satisfied by the vertices in B. Hence, the graph Ga,b,s with b < a+s

s does not
dmit any 2-community structure. □

We leave it as an open problem to characterize those disconnected threshold graphs with exactly one isolated vertex
hat do admit a 2-community structure. Also notice that for k ≥ 3, finding a (generalized) k-community structure in
hreshold graphs is an open problem as well.

. Graphs without generalized 2-community structures

In this section, we introduce an infinite family of connected graphs that do not admit any generalized 2-community
tructure. Notice that in [2], the authors present a first infinite family of graphs that do not admit any generalized 2-
ommunity structure. However, the graphs of that infinite family all contain an even number of vertices, while the infinite
amily introduced here contains both graphs with an even and graphs with an odd number of vertices.

Let p, l ∈ N+. The graph Gp,l = (V , E) (see Fig. 6) is defined as follows:
i) V = {u, v0, . . . , v4} ∪ T ∪ F , where T is a set of p vertices t1, . . . , tp which are pairwise true twins and F is a set of ℓ
ertices f1, . . . , fℓ that are pairwise false twins;
ii) u is adjacent to all vertices in V \ {v0};
iii) E contains in addition the edges v0v1, v1v2, v1v3, v2v4 as well as either the edge v2v3 or the edge v3v4;
iv) finally, T is complete to F ∪ {u, v1, v3}.

Based on this description, we define the infinite family of graphs G = {Gp,⌈ p
2 ⌉

: p ≥ 3}, for which no generalized
2-community structure exists. Note that a graph obtained from Gp,⌈ p

2 ⌉
by including both edges v2v3 and v3v4 admits a

2-community structure Π = {{v0, v1, v2, v3, v4}, T ∪ F ∪ {u}} and a graph obtained from Gp,⌈ p
2 ⌉

by including neither edge
2v3 nor v3v4 admits a 2-community structure Π = {{v2, v4, u}, T ∪ F ∪ {v0, v1, v4}}.

heorem 6. For p ≥ 3, Gp,⌈ p
2 ⌉

does not admit any generalized 2-community structure.

Proof. Let ℓ = ⌈
p
2⌉. It follows from Property 3 that Gp,ℓ does not admit a generalized 2-community structure Π = {C1, C2}

such that |Ci| = 1, for some i ∈ [[2]]. Hence, assume by contradiction that Gp,ℓ admits a 2-community structure
Π = {C1, C2}, i.e., such that |Ci| ≥ 2, for all i ∈ 1, 2. Without loss of generality, we may assume that v0 ∈ C1. Then
v1 must be in C1 as well, otherwise NC1 (v0) = ∅, a contradiction with Property 1. Moreover, by Property 2, we have
u ∈ C .
2
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Fig. 7. The graph Gp,l and the current assignment of vertices to communities.

Let us consider now the set of true twins T . We know from Property 5 that they all belong to the same community.
e distinguish two cases.

• First, assume that ti ∈ C2 for all i ∈ [[p]]. Then for all j ∈ [[ℓ]], N(fj) = T ∪ {u} implies that NC1 (fj) = ∅. It follows from
Property 1 that fj ∈ C2 for all j ∈ [[ℓ]]. In Fig. 7, we illustrate the current assignment of vertices to communities. Let

us test v2 on C2. If v2v3 ∈ E, then
|NC2 (v2)|
|C2| − 1

=
3

p + ℓ + 3
and

|NC1 (v2)|
|C1|

=
1
2
. If v4v3 ∈ E, then

|NC2 (v2)|
|C2| − 1

=
2

p + ℓ + 2

and
|NC1 (v2)|

|C1|
=

1
3
. Since p + ℓ ≥ 5, (2) fails for v2 in both cases, and we conclude from Property 4 that v2 ∈ C1.

Further, let us now test v4 on C2. If v2v3 ∈ E, then we have that
|NC2 (v4)|
|C2| − 1

=
1

p + ℓ + 1
and

|NC1 (v4)|
|C1|

=
1
4
if v2v3 ∈ E,

respectively
|NC2 (v4)|
|C2| − 1

=
2

p + ℓ + 2
and

|NC1 (v4)|
|C1|

=
1
3

if v3v4 ∈ E. Since by assumption p + ℓ ≥ 5, (2) fails for v4,

and we conclude that v4 ∈ C1.

Let us consider vertex v3. Assume that v3 ∈ C1. Then
|NC1 (v3)|
|C1| − 1

=
1
2

and
|NC2 (v3)|

|C2|
=

1 + p
1 + p + ℓ

>
1 + p

1 + p +
p
2 + 1

>

1 + p
2 + 2p

=
1
2
, a contradiction since (2) fails for v3. So v3 ∈ C2. But then

|NC1 (v1)|
|C1| − 1

=
2
3

and
|NC2 (v1)|

|C2|
=

p + 2
p + ℓ + 2

>

p + 2
p +

p
2 + 1 + 2

=
2
3
, a contradiction since (2) fails for v1.

We conclude that ti ̸∈ C2, for all i ∈ [[p]].
• Assume that ti ∈ C1 for all i ∈ [[p]]. In Fig. 8, we illustrate the current assignment of vertices to communities. Let us

test v4 on C1. Then, if v2v3 ∈ E, we have
|NC1 (v4)|
|C1| − 1

=
1

3 + p
and

|NC2 (v4)|
|C2|

=
1

2 + ℓ
. Since by assumption we have

p > ℓ, (2) fails. Similarly, if v3v4 ∈ E, we have
|NC1 (v4)|
|C1| − 1

=
2

4 + p
and

|NC2 (v4)|
|C2|

=
1

1 + ℓ
>

1
1 +

1
2 (p + 2)

=
2

p + 4
,

a contradiction since (2) fails. Hence, we conclude from Property 4 that v4 ∈ C2 in both cases. Further, let us now

test v2 on C1. Then, if v2v3 ∈ E,
|NC1 (v2)|
|C1| − 1

=
2

3 + p
and

|NC2 (v2)|
|C2|

=
2

2 + ℓ
. Since by assumption we have p > ℓ, (2)

fails for v2. If v3v4 ∈ E,
|NC1 (v2)|
|C1| − 1

=
1

2 + p
and

|NC2 (v2)|
|C2|

=
2

3 + ℓ
>

2
3 +

1
2 (p + 2)

=
4

8 + p
. Hence, in order for (2)

to hold, we must have p ≥ 4p, a contradiction since p ≥ 3. Thus, we conclude from Property 4 that v2 ∈ C2 in both
cases.
Further, let us consider the vertices in F . We show that fi ∈ C1 for all i ∈ [[ℓ]]. Let us test fi on C2 (recall that F is a set
of false twins, which are not adjacent to each other, and therefore do not necessarily belong to the same community),

for any i ∈ [[ℓ]]. Then, independently whether v2v3 ∈ E or v3v4 ∈ E,
|NC2 (fi)|
|C2| − 1

=
1
3

and
|NC1 (fi)|

|C1|
=

p
p + ℓ + 2

. Since

by assumption p ≥ 3 and p > ℓ, we get a contradiction because (2) fails for fi. Hence, we conclude from Property 4
that f ∈ C for all i ∈ [[ℓ]].
i 1
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Fig. 8. The graph Gp,l and the current assignment of vertices to communities.

Finally, let us consider v3 and test it on C1. Then, independently whether v2v3 ∈ E or v3v4 ∈ E,
|NC1 (v3)|
|C1| − 1

=
1 + p

2 + p + ℓ

and
|NC2 (v3)|

|C2|
=

2
3
. Since by assumption we have 1

2 (p − 1) < ℓ, we get that
1 + p

2 + p + ℓ
<

1 + p
2 + p +

1
2 (p − 1)

=

2(1 + p)
3(1 + p)

=
2
3
, a contradiction since (2) fails for v3. Hence, it follows from Property 4 that v3 ∈ C2. Then,

independently whether v2v3 ∈ E or v3v4 ∈ E, in order to satisfy (2) for v1, we must have
|NC1 (v1)|
|C1| − 1

=
p + 1

p + ℓ + 1
≥

3
4

=
|NC2 (v1)|

|C2|
. But, by the argument above

p + 1
p + ℓ + 1

≤
p + 1

p +
p
2 + 1

=
2p + 2
3p + 2

<
3
4
. Hence, we get a contradiction

since (2) fails for v1, and we therefore cannot have fi ∈ C1 for all i ∈ {1, . . . , p}.

We conclude from the above that Gp,⌈ p
2 ⌉

does not admit any 2-community structure. □

Note that one can easily define an integer linear program (ILP) in order to check whether a graph G admits a
generalized) 2-community structure or not. Using this approach, we could test all connected non-isomorphic graphs
p to 11 vertices for the existence of a 2-community structure. The complete list of these graphs was obtained by using
he algorithm developed in [17]. Our main findings are that, excluding the stars (that can be discarded due to Property 6):

• all connected graphs from 4 to 9 vertices admit a 2-community structure;
• with 10 vertices, only 4 connected graphs do not admit a 2-community structure; these graphs all belong to the

family presented in [2];
• with 11 vertices, there are only 6 connected graphs not admitting any 2-community structure;
• with 12 vertices, there are many (more than 100) connected graphs not admitting any 2-community structure.

These findings may help in order to better understand the structure of those graphs that do not admit any 2-community
tructure.

. Conclusion

In this paper, we investigated (generalized) k-community structures and gave new results for forests and (connected)
hreshold graphs. We also presented a first infinite family of graphs that do not admit any generalized 2-community
tructure and such that the graphs may contain an even or an odd number of vertices. There remain several interesting
pen questions, some of which we present hereafter.

• What is the complexity of deciding whether a given graph admits a 2-community structure?
• Which disconnected threshold graphs admit a 2-community structure?
• Which (connected) threshold graphs admit a k-community structure, for k ≥ 3?
• Can we extend our results on (generalized) 2-community structures to larger graph classes? A natural extension

would be split graphs, eventually leading towards chordal graphs (which generalize both split graphs and forests).
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