
Hazard Detection for Robotic Applications as Visual
Anomaly Detection

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Dario Mantegazza

under the supervision of

Prof. Luca Maria Gambardella

co-supervised by

Prof. Alessandro Giusti

May 2024

Dissertation Committee

Prof. Kai Hormann Università della Svizzera italiana, Switzerland
Prof. Paolo Tonella Università della Svizzera italiana, Switzerland

Prof. Giacomo Boracchi Politecnico di Milano, Italy
Dr. Simone Gasparini INP Toulouse, France

Dissertation accepted on 3 May 2024

Prof. Luca Maria Gambardella
Research Advisor

Università della Svizzera italiana, Switzerland

Prof. Alessandro Giusti
Research Co-Advisor

Università della Svizzera italiana, Switzerland

Prof. Walter Binder
Prof. Walter Binder / Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Dario Mantegazza
Lugano, 3 May 2024

ii

Alla mia nuova famiglia, Tatiana, Massimo e Caramella, e alla mia
famiglia di origine Patrizia, Giorgio e Clara.

iii

iv

Acknowledgements

When I started my academic journey I would not ever guess that I would pursue a Ph.D. At
that time, it was unfathomable for me to think that one would put himself under so many more
years of study, nonetheless, here I am writing my doctoral thesis.

What I didn’t know then was that a Ph.D. is not like a Bachelor’s or a Master’s; with a
Ph.D. you have freedom, and you have the opportunity to explore and learn what you love
and are passionate about. A Ph.D. is a lot of hard work, with highs and lows, long nights and
early mornings, running toward deadlines but all of this effort leads and is leading to great
opportunities. I built and strengthened my knowledge of AI and Robotics, met with impressive
people from all over the world, and traveled to two other continents while participating in the
communal effort that is scientific research. Now I’m starting a new business thanks to what I
learned in these years.

This Ph.D. means more to me than only its academic value; in my Ph.D. I grew as a person,
I learned to be more patient and focused, and I learned how to teach and speak in public.
Most importantly, my Ph.D. coincided with exciting moments in my life during which I had the
opportunity to form a new family.

For all of this, I have to thank those who helped me along this journey. Starting from my
supervisors Alessandro Giusti and Luca Gambardella who first believed in me and gave me the
opportunity to IDSIA, and guided me in my work. Thank you also to Jerome Guzzi for his
valuable insights and precious support in many projects. Thanks to Omar, Daniele, Antonio,
David, and others from IDSIA who listened, guided, and counseled me in these years. Thanks
to Gulcan from Nomoko AG and Carlos from Hovering Solutions Ltd. for their collaboration. A
heartfelt thanks to the friends I made in this journey: Arianna, Alberto, Elia, Luca, Stefano, and
to those who are friends from even before: Andy, Samuele, Mirko, Gabri, Vale, and Francesco.
Special thanks to my family, Clara, Patrizia, Giorgio, Jury, Ornella, Paolo, and my lovely wife
Tatiana who supported me over these years and always believed in me.

I would like to express my gratitude to the initiatives that supported this Ph.D.: the Swiss
National Science Foundation (SNSF) through the National Centre of Competence in Research
(NCCR) Robotics, the Innosuisse agency, and the European Commission through the Horizon
2020 initiative. A final thanks to Giacomo Boracchi, Simone Gasparini, Kai Hormann, and Paolo
Tonella for dedicating their time and effort as members of my evaluation committee.

v

vi

Abstract

For a robot, a hazard is an event or object that poses risks to its mission or to itself. Some
hazards such as obstacles are known, and can be accounted for; others, such as piercing debris
or dense fog might be unexpected and may be seen only on some rare occasions. For these,
collecting samples to train a perception model is often impossible. Thus, a hazard detection
system should not require hazard samples to function correctly.

In this thesis, we propose to use deep learning-based visual anomaly detection models to
solve hazard detection for mobile robots employed in industry. Our proposal of relying on visual
anomaly detection is particularly suited for these robots since most of those have cameras.

Anomaly detection is a machine learning topic focused on finding rare, unexpected, patterns
in data that deviate from an expected behavior. It can be applied to various fields and data types,
but the application of anomaly detection in robotics is rather new and limited to specific use
cases. Nonetheless, anomaly detection fits well with hazard detection as it requires datasets
composed only of non-anomalous (i.e., expected, normal) samples.

No public datasets are available for the task of hazard detection for robotics. We start by clos-
ing this gap with our general-purpose visual hazard detection dataset for mobile robots. Then,
we introduce a hazard detection system based on convolutional undercomplete autoencoders.
Our approach detects multiple types of hazards using only images coming from the robot’s
front-facing camera. We test this solution using two real-world qualitative demonstrations with
a wheeled robot in a lab, and an industrial drone in a factory, and detect all anomalies.

Based on the expectation that few anomalous samples will be collected during deployment,
we experiment with an outlier exposure approach, to learn from these key anomalous samples.
We employ a Real-NVP model, combined with a features extractor and a novel loss, to train
using a few detected anomalies in addition to normal samples. Our experiments show that
our solution effectively increases the detection performance for all anomalies, measured by the
AUC, by 9.6%.

Similarly, we can expect that the data collected by the deployed robots becomes too much to
be all manually inspected and labeled. We propose two novel active learning methods designed
for anomaly detection using Real-NVP. We test our solutions against six other queries strategies
from the literature, across more than 6500 experiments. We show that when multiple samples
are collected, our approaches are best for choosing informative samples collected.

Lastly, we study how pre-trained feature extraction models perform on 3D anomaly de-
tection tasks. Our results show that while our approaches are better than older models and
baselines when data is scarce, ad hoc models outperform our proposed solution when enough
data is available.

vii

viii

Contents

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem Definition . 2
1.2 Contributions . 3

2 Related Work 7
2.1 Anomaly Detection . 7
2.2 Visual Anomaly Detection . 9
2.3 Models, Methods, and Applications . 9

2.3.1 Reconstruction-based Methods . 9
2.3.2 Generative Methods . 10
2.3.3 Normalizing Flow . 11
2.3.4 Other Methods . 11

2.4 Outlier Exposure . 12
2.5 Anomaly Detection in Robotics . 12

2.5.1 On low-dimensional data . 12
2.5.2 On high-dimensional data . 13

2.6 Datasets for Anomaly Detection in Robotics . 14
2.7 Conclusions . 15

3 Hazard and Robots: A Novel Dataset for Anomaly Detection for Mobile Robotics 17
3.1 Motivation and Objective . 17
3.2 The Dataset . 18
3.3 Latest Release (v3.1) . 18
3.4 Data Description . 19
3.5 Data Acquisition . 22
3.6 Additional Releases of The Dataset . 23

3.6.1 Release v1 . 24
3.6.2 Corridors . 24
3.6.3 Releases v2 and v3 . 25

3.7 Anomaly Categorization . 25

ix

x Contents

3.7.1 Background . 25
3.7.2 Categorization of Anomalies . 25

3.8 Conclusions . 26

4 Using Visual Anomaly Detection as a Proxy for Mobile Robot Hazard Detection 27
4.1 Background . 27
4.2 Experimental Setup . 28

4.2.1 Anomaly Detection on Frames . 28
4.2.2 Patch-Level Anomaly Detector . 29
4.2.3 Training . 30
4.2.4 Metrics . 30

4.3 Experimental Results . 31
4.3.1 S8 Model Hyperparameters . 31
4.3.2 Patch Aggregation . 31
4.3.3 Scales and Anomalies . 31
4.3.4 Run-time Evaluation . 32

4.4 Demonstrators . 33
4.4.1 Wheeled Robot Demonstrator . 33
4.4.2 Drone in Factory Demonstrator . 34

4.5 Conclusions . 36

5 Hazard Detection with Outlier Exposure 37
5.1 Background . 37

5.1.1 Models and Approaches . 38
5.2 Method . 39

5.2.1 Problem Statement and Definitions . 39
5.2.2 Real-NVP . 40
5.2.3 Real-NVP With Outlier exposure . 40

5.3 Experimental Setup . 41
5.3.1 Autoencoder: Reconstruction and Dimensionality Reduction 41
5.3.2 Density Estimation (RNVP, RNVP+OE) . 41
5.3.3 Binary Classifier Baseline (BCLASS) . 42
5.3.4 Wide Residual Networks with Outlier Exposure (WRN+OE) 42
5.3.5 Metrics . 43
5.3.6 Computational Costs . 43

5.4 Experimental Results . 43
5.4.1 Hyperparameter Exploration . 43
5.4.2 Comparison with Baselines . 43
5.4.3 Effect on the RNVP Target Space . 44
5.4.4 Impact of the Number of Exposed Anomaly Frames 44
5.4.5 Impact of the Number of Exposed Anomaly Types 45

5.5 Conclusion . 47

6 Active Learning Approaches for Anomaly Detection 49
6.1 Background . 49

6.1.1 Active Learning . 50
6.1.2 Active Anomaly Detection . 50

xi Contents

6.2 Method . 50
6.2.1 Anomaly Detection . 51
6.2.2 Active Learning . 51

6.3 Experimental Setup . 52
6.3.1 Implementation . 52
6.3.2 Metrics and Tracking . 53
6.3.3 Experiment Run . 53

6.4 Experiment Results . 53
6.4.1 Overall Performance . 53
6.4.2 Initial Training Size and Unlabeled Anomaly Presence 53
6.4.3 Anomaly Selection . 54
6.4.4 Drone in Train Tunnel Demonstrator . 55

6.5 Conclusion . 56

7 Applications to 3D Point Clouds 57
7.1 Background . 57
7.2 Related Work . 58

7.2.1 Dataset . 58
7.2.2 Models and Approaches . 58

7.3 Experimental Setup . 60
7.4 Experimental Results . 62
7.5 Discussion . 65

8 Conclusions 67
8.1 Future work . 68

A Appendix 71

Bibliography 75

xii Contents

Figures

1.1 Not all hazards can be predicted at design time. Some can be extremely danger-
ous for the robot or its surroundings . 2

1.2 Thesis Overview . 4

3.1 Hazard&Robots samples example . 22
3.2 Dataset used for image level anomaly detection study 23
3.3 Example of categorization of anomalies . 25

4.1 Robot encounter Hazard . 28
4.2 Comparing scale approaches . 29
4.3 Autoencoder hyper-param experiment results . 32
4.4 Autoencoder output comparison at different scales 33
4.5 Example of runtime evaluation . 34
4.6 Drone Demo in Factory . 35

5.1 Schema explaining the Real-NVP+OE model . 39
5.2 Autoencoder Architecture . 42
5.3 The impact of parameters λ and γ (x-axes) on the performance of the model

measured with the AUC (y-axis) . 44
5.4 The effect on loss function and L2 norm of exposing the model to anomalies

during training. 45
5.5 In depth analysis of Outlier Exposure . 46
5.6 In-depth analysis of Anomaly type exposure . 46

6.1 Progress curves . 54
6.2 Progress curves with different anomalies availability 55
6.3 Progress curves with different anomalies variety . 55

7.1 Examples of samples from the Mvtec3D dataset . 59

xiii

xiv Figures

Tables

3.1 Dataset split details . 20
3.2 Classes of Anomalies in the dataset . 21

4.1 Scale model comparison results . 30

5.1 Baseline comparison . 44

6.1 Active AD initial size analysis . 54
6.2 Detailed analysis of average AUC performance . 54
6.3 Detailed analysis of average AP performance . 54

7.1 Comparing our approaches to the MVTec-3D benchmark 63
7.2 Baselines based Model AUC . 63
7.3 XYZ Model AUC . 63
7.4 RGB Model AUC . 63
7.5 XYZ+RGB Model AUC . 64
7.6 Handcrafted based Model AUC . 64

xv

xvi Tables

Chapter 1

Introduction

In the last decade, the field of robotics has been evolving at an incredible pace. Driven by
new manufacturing processes, better electronics, and advancements in core technologies, new
mobile robots are becoming available for purposes outside of academic research labs. Wheeled,
legged, and track robots are used in various real-world applications, such as site inspection,
search and rescue missions, and even entertainment; drones are now a commodity and are used
in a wide range of situations, from vacation filming to construction 3D scanning; fixed-wing
drones are used to ship medicine and transfusion material across large African countrysides;
new small water drones are now used to explore sea and lake beds, extending our reach to new
and unexplored environments. With the advent of advanced driver-assistance systems (ADAS)
and automated driving systems (ADS), even road vehicles now fall under the robotic hat.

Similarly, the field of artificial intelligence showed an explosion in interest, thanks to the
democratization of training methods for deep learning models with commercial GPUs, reaching
the current all-time high that we are witnessing today. The diffusion of deep learning models,
even without considering LLMs such as ChatGPT, led to huge improvements in performance,
efficiency, or efficacy, across many industries and research fields. So many in fact, that it is now
difficult to find a research field or an industrial sector that has not seen the use of deep learning
approaches.

Thanks to these advancements, the field of intelligent robotics, which sits at the intersection
of the two aforementioned ones, has also grown. Now, intelligent robots with varying degrees of
autonomy are available for many applications, from pallets and packages automatic unloading
out of truck trailers to the destruction of unwanted weeds in agricultural fields. In addition to
new applications, robots are being used in some use cases for which they were not designed for;
e.g., a legged robot was used to tow a rickshaw carriage 1 or a drone was flown over an erupting
volcano 2. The wider adoption and addition of unique and unexpected use cases are increasing
the exposition of intelligent robots to novel environments, scenarios, objectives, and entities
that might be unforeseen or different from what can be anticipated. Some of these unexpected
events might even lead to problems with the robot’s missions, damage to the surroundings,
damage to the robots themselves, or even harm to humans. Nonetheless, intelligent robots are
expected to perform correctly in all situations and this performance expectations often fall back
on the robot’s environmental perception system.

1https://www.youtube.com/watch?v=zyaocKS3sfg
2https://www.youtube.com/watch?v=5cFcOVIYxAQ

1

2 1.1 Problem Definition

It is becoming expected to have robots to work even outside of the design scenarios. Envi-
ronment perception is more critical than ever, extending beyond applications for autonomous
robots such as autonomous road vehicles, robots for agriculture, robotic delivery, and industrial
robotic inspection, to applications of semiautonomous ones such as drone inspection and scan-
ning, and even non-robot related ones such as navigation assistance for the visually impaired
or mixed and augmented reality.

1.1 Problem Definition

When robots are being developed, a lot of effort is put into preemptively avoiding unwanted
scenarios and finding ways to deal with them. Nonetheless, most of the perception systems
are limited to a set of specific scenarios and do not generalize out of these. Often, for tasks
such as object detection, obstacle detection, and avoidance, a solution is built using supervised
machine learning methods; for example, if a new event or problem appears, it is studied, and if
deemed relevant, data is collected and labeled and a solution is implemented in the perception
system. This approach produces detection models specifically for those known events that can
modeled and learned, resulting in well-performing, albeit specific, perception systems.

The key limitation of this approach is that even considering future software updates, the
detection capabilities of the environment perception system are limited to what the underlying
model is trained on; moreover, the model is limited to the data that can be collected. Imagine
a system that is tasked with the detection of obstacles in the path of a robot (see Figure 1.1).
These systems are perfectly capable of detecting walls or objects of different dimensions that
the robot might face. But, if the robot encounters a pile of small-sized sharp objects such as
screws and nails, the obstacle detection system might fail to recognize the hazards resulting in
a punctured wheel. Similarly, the navigation system of a drone could wrongly interpret a dense
cloud of smoke, resulting in an unknown flight behavior of the drone. To solve these situations,
one needs a system that, paired with existing environmental perception modules, adds a way to
perceive unexpected hazardous situations; this system would solve the task of hazard detection.

Figure 1.1. Not all hazards can be predicted at design time. Some can be extremely
dangerous for the robot or its surroundings

In general, the task of hazard detection for robots consists of finding any situation, object,
actors, or events that might be or become hazardous for the robot or its mission. While sharing
some aspects with the task of obstacle detection or path planning, hazard detection goes beyond

3 1.2 Contributions

the recognition of objects that might block or reduce the mobility of the robot, and tries to find
any type of situation or object that is or might become hazardous. Hazard detection can be dif-
ferentiated from other perception tasks by considering two key characteristics. The first is that
hazards need to be detected both when they are exogenous, such as a box or a puddle of water
in front of a robot, and when they are endogenous, such as an improperly fitted component
that impairs the robot in some ways; for example, a working but badly mounted sensor that
points in the wrong direction. The second is that the detection of hazards must happen with
or without having prior knowledge of the hazard encountered. Supervised approaches cannot
fit these requirements. Supervised solutions in addition to requiring large labeled datasets are
strongly limited by the composition of the dataset itself; i.e., by what cases are represented in
the data.

To handle difficult situations such as the one now faced by robots, we humans and animals
have evolved a behavior counterposed to curiosity known as neophobia [85, 66]. Described as
“the avoidance of an object or other aspect of the environment solely because it has never been
experienced and is dissimilar from what has been experienced in the individual’s past” [87],
neophobia allows us and animals alike to avoid perils and risks. In this case, the anomalous
situations are identified as those unusual events that differ strongly with respect to past expe-
riences.

One task, in machine learning and deep learning, that fits correctly the characteristics de-
scribed before of hazard detection and is similar to the neophobia behavior is anomaly detection,
in particular, unsupervised anomaly detection. If we consider all hazards as anomalous patterns
in the data collected by the robot from an otherwise nominal environment, we can map hazard
detection to unsupervised anomaly detection. Instead of trying to learn all possible classes of
anomalies, in the task of anomaly detection, we focus on learning only the concept of normality.
This concept is learned through a proxy task, such as input reproduction, and is then used in
to determine if a new sample is similar (alas normal) or different (anomalous) from what was
seen previously.

1.2 Contributions

This thesis presents our work on the use of unsupervised anomaly detection to solve the task of
visual hazard detection for robots. Specifically, we focus on exploring all the aspects that con-
cern the deployment, use, and continual improvement of a hazard detection system used on
a robot employed in unstructured environments industrial facilities, underground tunnels, or
large campuses’ indoors. Our objective is to study and introduce all the methodologies needed
to develop a proper hazard detection system with a feedback loop for iterative detection im-
provement. Across our work our only source of information is the images (RGB or greyscale)
coming from the robot’s front-facing camera; briefly, we also explore 3D point clouds as a pos-
sible source of information. In Figure 1.2 we represent an overview of our work as it was just
described. One key aspect of this thesis to consider is that, while the neophobia behavior de-
scribed before implies a reaction to the detection of a problem, in our work we only focus on
the detection of hazards and not on the reaction after detection.

In Chapter 2 we dive into the literature of anomaly detection, visual anomaly detection,
and their applications in robotics to describe the state of the art before our contributions. We
explain how anomaly detection differs from other supervised approaches, we detail the multiple
application scenarios and uses of anomaly detection, we explore existing solutions for visual

4 1.2 Contributions

Figure 1.2. Overview of our thesis objective. Contributions are highlighted in green with
an indication of relative Chapters. AD stands for anomaly detection.

anomaly detection and finally, we paint the dataset landscape for training deep learning models,
highlighting the lack of a proper dataset for the task of hazard detection for robots.

In Chapter 3 we introduce our dataset Hazards&Robots, purposely made to explore the task
of hazard detection without assumptions on the robot mission or robot type. To accomplish
this, we define three application scenarios using two different robots. The first two scenarios
consider a drone and were developed in collaboration with our industrial partner Hovering
Solutions Ltd. under the EU Horizon 2020 1-SWARM project. The third scenario focuses on
a wheeled ground robot and the data has been collected and labeled by us with the robot pa-
trolling our university corridors. The dataset is composed of high-resolution 512× 512 pixels
images captured using the front-facing cameras of the robots, while they traverse the envi-
ronments. Both normal samples representing empty, tidy, and in-order environments without
obstacles or human presence, and anomalous samples, containing anomalies ranging from dust
in the air to glass shards on the floor, have been methodically collected in all three scenarios.
This dataset is used in all the following Chapters to train and explore deep learning models for
visual anomaly detection (except in Chapter 7).

With our dataset, in Chapter 4 we explore a simple but effective deep learning approach for
detecting visual anomalies using undercomplete convolution-based autoencoders. We explore
the use of autoencoders as anomaly detectors on image patches at different sizes, analyzing the
detection performance for anomalies with different scales. We observe that a low-resolution
patch of 64× 64 pixels representing the whole field of view of the robot (ie. the whole frame)
is sufficient to capture most of the anomalies presented. We conclude the Chapter by deploying
the model on two robots in two different scenarios, demonstrating that autoencoders can solve
the task of hazard detection.

In Chapter 5 we explore Outlier Exposure, a methodology to use anomalous samples during
the training of anomaly detection models without changing the core unsupervised principle
that characterizes these solutions. While outlier exposure is tested in multiple toy-problems

5 1.2 Contributions

in the original paper, we are the first to test it in an real-world applied scenario; we do so by
introducing a new component to our anomaly detector, a Real-NVP model. In the Chapter we
explore all the nuances of this approach in a series of experiments, showing that our integration
of outlier exposure to the Real-NVP loss indeed works.

With the ability to detect visual anomalies and train models not only with normal data col-
lected in the wild, we now need to explore the best approach to efficiently label the thousands
of samples that a deployed robot would collect along its missions. In our vision of a system
with a feedback loop for continuous detection improvement, in Chapter 6 we use our dataset
as mission proxy, and a variation of our Real-NVP with outlier exposure, to explore 8 differ-
ent Active Learning queries, 6 from literature and 2 introduced by us, across more than 6500
experiments. The results indicate that the active learning methods to be used, depend on the
initial training size and the total amount of samples collected during deployment. With this
Chapter, we close the feedback loop and we demonstrate our approach in a drone-based tunnel
exploration scenario.

In our last contributions, detailed in Chapter 7, we move from studying the environment
using 2D vision to studying it with 3D vision. 3D sensors and scene understanding are gaining
popularity and are often found in robots side by side with 2D RGB cameras. In our most recent
work, we try to use a foundation model for 3D understanding, namely Point-M2AE, to solve
the task of anomaly detection on a recently released 3D point cloud anomaly detection dataset
called MVTec-3D. Our results show that while our approach is enough to beat naive and base-
lines’ performance on the dataset benchmark, considerably more work is needed to achieve
a generalized performance comparable to what we can obtain using image-based models as
bespoke models outperform our solution.

We conclude this thesis with Chapter 8, where we also propose future work we believe
is needed to improve the state of the art for the task of hazard detection for robots; we also
introduce a note on our future effort on bringing this work to the market.

6 1.2 Contributions

Chapter 2

Related Work

In this Chapter, we introduce the different topics upon which we base our work. Specifically, we
discuss about anomaly detection, with a focus on visual anomaly detection with the objective of
building a visual hazard detection system. We continue with a discussion of the applications of
anomaly detection in robotics and we finish with a focus on the datasets available for training
visual anomaly detection models for robotics.

2.1 Anomaly Detection

Anomaly detection, also known as out-of-distribution detection or novelty detection, is a widely
researched topic in machine learning. It focuses on finding patterns or samples in data sources
that differ from a known behavior. Consider the task of finding anomalies in food packages in
an industrial production line. An anomaly could be a misproduced package or a package with a
foreign object like a piece of metal or even something completely different such as a tennis ball.
The definitions of what is and what is not an anomaly – also called outlier or novelty depending
on the context – are necessarily vague; Chandola states that an anomaly is a “pattern in data
that do not conform to expected behavior” [16], while Ruff defines it as “an observation that
deviates considerably from some concept of normality” [76]. In our example the context could
be a working packaging line, producing correctly built food packages. One thing of notice is that
all definitions indicate an incompatibility between finding loosely defined anomalies and typical
machine learning tasks such as multi-class classification or regression. In object classification
and detection, or semantic and instance segmentation, the subjects of the analysis need to be
well-known, well-sampled, and modeled. Instead, in anomaly detection most of the subjects of
interest are unknown, as anomalies are rare. In anomaly detection, models have to rely only
on known samples that represent normality. This is why sometimes anomaly detection is also
referred to as one-class classification, as the only class we can learn from is the normal one.
Clearly, anomaly detection fits a different paradigm of data analysis.

Another key aspect of anomaly detection is the data setting. Anomaly detection can be
solved in a supervised, semi-supervised, or unsupervised setting; the first two are more difficult
to encounter as they require complete or partial labeling of the data, thus a large number of
anomalous samples at hand, often difficult to acquire. The supervised setting implies complete
labeling of the data and it is less realistic to be applied to a real-world problem; one could say
that anomaly detection in a supervised setting is comparable to an open-set classification prob-

7

8 2.1 Anomaly Detection

lem. The semisupervised setting implies that in addition to the unlabelled (assumed normal)
data, we have a subset of labeled (normal or anomalous) samples that can be used for training.
Instead, the latter setting (unsupervised) is the most diffused one; it assumes that only a known
data source of normality is available and it fits almost all kinds of real-world anomaly detec-
tion problems. The reason why it is called unsupervised is that the data source used to gather
training data is expected to produce only normal samples, except for minor contaminations of
undetected anomalies, thus not requiring a labeling process. Going back to the food packages
example, if we collect data from a working production line with an already present quality pro-
cess, we can assume that the data we have collected is representative of anomaly-free packages;
that fits the unsupervised setting.

The unsupervised setting fits also our scenario of hazard detection for mobile robots. For
example, if we consider a robot that moves along a specific route in a building without encoun-
tering any problems or peculiarities, we can assume all the samples collected by the robot as
hazard-free, as per the unsupervised setting. Now that we have a general idea of what anomaly
detection is and some of its characteristics, we will briefly expand the concept of anomaly.

Categorization of Anomalies

Ruff et al. [76], in their survey, identify common characteristics of anomalies and categorize
them as follows: point anomalies, contextual, collective, low-level sensory, and high-level se-
mantic. Point anomalies are the most commonly studied type of anomalies, they represent a
single anomalous instance like a photo of a cat in a dataset of dog photos. Contextual anoma-
lies are anomalies that are so only when inserted in a specific context, for example, a screw in
a food package line is anomalous but would be ok in a screw manufacturing line. Collective
anomalies are sets of anomalies that have some sort of relation with one another but taken
individually might look normal. For example, a fraudulent IBAN in a series of money transfers,
while composed of characters and numbers that are normal per se, collectively they indicate a
malicious act or an error.

The last two categorizations are introduced by Ruff et al. following the diffusion of deep
learning models and their wider set of applications. They define low-level sensory anomalies
as anomalies related to raw data characteristics; such anomalies would be relative only to the
appearance of images, such as brightness, noise, blur, or typos in textual data. Instead, high-
level semantic anomalies are those that involve data semantics, such as an open pothole in an
environment where potholes are always closed or a different recipient for a recurring money
transfer. Detecting the latter is harder, and requires approaches capable of extracting and rep-
resenting semantic information from data. Note that this categorization regards anomalies
and not the data sources dimensionality, low-level anomalies like noise can be found in im-
ages (high-dimensionality) and high-level anomalies can be found in low-dimensional data,
like detecting a fault in a machine before it happens using low-dimensional sensory data. Shal-
low machine learning approaches such as SMV, PCA, mixture models, the one proposed by
Chakravarty et al. [15] others well reviewed by Chandola et al. in their survey [16] cannot deal
with high-level semantic anomalies such as those that a robot might encounter due to their
lack of complex information internal representations, failing at the detection task. If we want
to be able to find complex, high-level semantic anomalies in the surroundings of a robot, one
simple way of achieving this is through vision. For these reasons, we will focus only on deep
learning approaches for vision to solve the task of anomaly detection using images coming from
the robot’s camera in an unsupervised setting.

9 2.2 Visual Anomaly Detection

2.2 Visual Anomaly Detection

We formally define visual anomaly detection as the task whose objective is to learn the detection
function ad : k→ R that assigns a real value (i.e. an anomaly score) to an image k. This often
is achieved by learning another proxy function, like input reconstruction, to obtain the anomaly
score. Given the unsupervised setting, we state that the function ad is learned over a training
set Tt rain composed only of images containing normal situations. The function is tested on a
testing set Ttest that contains images that can be either normal Kn or anomalous Ka. A threshold
is needed at inference time to produce a final decision on a sample, based on its anomaly score.
The threshold can be chosen using the validation set Tval composed of only nominal samples.
Later we will allow a relaxation of this definition to the semi-supervised setting by adding to
Tt rain of a small set Tout containing only known anomalies.

2.3 Models, Methods, and Applications

When operating on images, the task of anomaly detection often consists of finding high-level
semantic signals that identify an anomaly, therefore implying some level of semantic under-
standing of the input. Deep learning approaches, thanks to their ability to extract both low-level
and high-level information, have been successfully used for anomaly detection in various fields.
As anticipated, often the model responsible for the detection is not trained directly on the task
of anomaly detection but on a proxy task, e.g. the reconstruction of a portion of the input.
This is a widespread approach to anomaly detection. For example, Haselmann et al. [34] fo-
cuses on the surface inspection task; they set up an unsupervised dataset composed of fault-free
sample images with central regions of images cut out. To train the anomaly detector they fit
an autoencoder-like convolutional model on a proxy reconstruction task. The model fed with
images missing the centerpiece, learns to reproduce that part, in case of anomalies it will fill
the cutout with a normal texture, thus missing the anomaly and making it segmentable. In
industrial manufacturing, anomaly detection is used for a diverse set of scenarios. Scime et
al. [82] train a multi-scale CNN (MsCNN) to detect anomalies in power-based additive metal
manufacturing processes in a supervised setting.

Anomaly detection applications are not limited to industrial manufacturing, Schleg et al. [80]
propose AnoGAN, a generative adversarial network-based model, to find anomalies in med-
ical imaging data. In their work, they assume an unsupervised setting to find and segment
anomalies in tomography images of human retinas. Another example of an application of vi-
sual anomaly detection is the work of Castellani et al. [13]. In their work, the authors propose
to use a siamese autoencoder in combination with a novel clustering method to find anomalies
in a digital twin of complex machinery. These application examples show the variety of meth-
ods that can be used, in the following sections we provide an in-depth description of some of
the principal deep learning methods used for visual anomaly detection.

2.3.1 Reconstruction-based Methods

Most of the recent research [76] on anomaly detection, be it visual or based on signal data, is
centered on undercomplete autoencoders with a reconstruction-based proxy task. Undercom-
plete Autoencoders (AE) [49, 18] are neural reconstruction models that take an image as input
and are trained to reproduce it as similar as possible in their output. The typical architecture

10 2.3 Models, Methods, and Applications

of an autoencoder consists of two modules, the encoder, and decoder, separated by a set of
multilayer perceptron (MLP) called bottleneck. In the autoencoders used for visual anomaly
detection, the encoder and decoder modules are convolutional networks that learn to encode
the input image into a low-dimensional embedding and decode the semantically high-level in-
formative embedding back into an image. The whole model is trained to minimize losses that
measure the reproduction error in the output (e.g. Mean Absolute Error loss) while being con-
strained in the number of nodes in one of the central hidden layers (i.e. the data bottleneck).
This limitation to the amount of information that can flow through the network introduces an
error in the autoencoder’s output, this prevents the autoencoder from simply copying the input
to the output. To minimize the loss on a large dataset of normal (i.e., non-anomalous) samples,
the model has to learn to compress the inputs to a low-dimensional representation that cap-
tures high-level semantic information. The result is that during training the autoencoder learns
to encode high-level semantics of normal samples in the limited latent space to minimize the
reproduction error.

At inference time, when tasked to encode and decode a never-seen sample, i.e., a sample
from a different distribution than the training set, the autoencoder will commit mistakes in
the reconstruction. A normal sample would have some small errors but the reproduction will
still be similar to the input. Instead, anomalous samples will be wrongly reproduced with
lots of errors; for example, if the input sample is a food package with a visible foreign object
like a smartphone, that object could be completely absent from the reproduction as the model
has never seen a smartphone and doesn’t know how to reproduce it. This means that the
reproduction error can be exploited to detect anomalies when an autoencoder is trained only
on normal images and potentially, albeit not of interest to us, be used to segment the anomaly.
Measuring the reconstruction error for a sample, therefore, yields an indication of the sample’s
anomaly, normal samples will produce low errors, and anomalous ones high ones.

2.3.2 Generative Methods

A variation to the reconstruction task proposed with undercomplete autoencoders comes from
generative models such as Variational Autoencoders [46] and Generative Adversarial Networks
(GAN) [32]. These models are also used for anomaly detection tasks. The training process
of generative models focuses on mapping an input, sampled from a predefined distribution
(i.e., Gaussian or uniform), to the distribution of normal training samples, i.e., generating an
image. Variational Autoencoders (VAE) [46] have an architecture based upon undercomplete
autoencoders with the addition of variables at the bottleneck level representing the parameters
of the chosen probability distribution. For example, mean, standard deviation, and one addi-
tional variable acting as random noise input, can be added at the bottleneck level; the last one
is needed for the reparameterization trick that allows the backward propagation through the
model. During training the encoder learns how to map input samples to the chosen distribution
(e.g. a Normal distribution) by changing the parameters, while the decoder receives as input a
vector sampled from the chosen distribution. The loss for a VAE is composed of a reconstruction
loss identical to those used in undercomplete autoencoders, with the crucial addition of the KL
divergence component; this is used as a regularizer during the training of the model. Once
the model is trained on normal samples, it is possible to sample the latent space distribution,
to compute the likelihood of an input over the latent distribution. Samples that have a low
likelihood are identified as anomalies; conversely, a high likelihood indicates normal-looking
samples.

11 2.3 Models, Methods, and Applications

GANs are another kind of generative neural network architecture that can be trained in
an unsupervised setting and be used to solve anomaly detection. These networks strongly
differ from autoencoders and variational autoencoders. Instead of having a single “end-to-end”
network, GANs are composed of two separate neural network models (the generator and the
discriminator networks) that are pitted against one another. The generator network, fed with
normal samples, is trained by minimizing the objective loss, to generate images to mislead the
discriminator network, which at the same time aims at maximizing the GANs’ objective function
by learning to discern between images from the reference distribution and those outside of it.
The result of this zero-sum game is the generator learning to produce images as similar as
possible to the reference distribution, and the discriminator learning to find those samples that
are different from the original distribution. Differently from VAEs and flow models (which we
will explain in the next section), GANs’ latent distributions are not explorable as are learned
implicitly by the models; given a trained GAN it is not possible to estimate directly the likelihood
of a sample. When applied to anomaly detection tasks, GANs often are modified to better fit the
task as an anomaly score cannot be directly computed; for example, the method proposed by
Schlegl et al. [81] utilizes a combination of reconstruction and discrimination losses as anomaly
score.

2.3.3 Normalizing Flow

Normalizing flow models are often used as, an alternative to VAEs and GANs, for generative
purposes [2, 47, 37, 48] but can be also used in the context of anomaly detection [97, 10]. In
our work we do not exploit the generative functionality of flow-based models, thus we prefer to
describe them as a separate approach to the previously described generative ones. Normalizing
flows are used to explicitly learn a probability distribution from the input training set in an
unsupervised setting. Through clever use of change-of-variable laws, normalizing-flow models
use coupling layers [24] to learn a combination of invertible transformations that map the inputs
to a chosen latent distribution, such as a normal distribution. The result is a model that given
a sample, maps it to the chosen distribution, or given a point from the distribution, produces
a new sample. For the task of anomaly detection, one can use the flow-based model learned
mapping to directly estimate the likelihood of a new sample with respect to the probability
distribution learned during training. As we will better describe in Chapter 5 and 6, instead
of using the model directly on the input image, we first use dimensionality reduction/feature
extraction models to lower the data dimensions upon which the flow models are trained. In our
research, we use Real-NVP models [24] to learn a mapping from some latent space embeddings
of images to a similarly sized multivariate Gaussian distribution.

2.3.4 Other Methods

One-class classifiers, such as Deep SVDD [75] and deep OC-SVM [27], can also be used as
anomaly detectors; these methods are used to learn a latent space upon which define a decision
boundary around the training instances. Alternatively, in a recent work, Sabokrou et al. [77]
propose a new adversarial approach using an Autoencoder as a reconstructor, feeding a standard
CNN classifier as a discriminator, trained adversarially. During inference, the reconstructor is
expected to enhance the inlier samples while distorting the outliers; the discriminator’s output is
used to indicate anomalies. Sarafijanovic introduces [79] an Inception-like Autoencoder for the
task of anomaly detection on images. The proposed method uses different convolution layers

12 2.4 Outlier Exposure

with different filter sizes all at the same level, mimicking the Inception approach [88]. The
model works in two phases; first, it trains the Autoencoder only on normal images, then, instead
of the Autoencoder reproduction error, it measures the distance over the pooled bottleneck’s
output, which keeps the memory and computation needs at a minimum.

2.4 Outlier Exposure

Until now, we assumed that the anomaly detection task we are solving is set in an unsupervised
setting, meaning that the training data is only nominal. As explained in the introduction, this
assumption can be limiting when dealing with real-world applications of anomaly detection; in
any application, after deployment, one can expect to collect some samples of anomalies. Thus,
the standard approach to anomaly detection of training a model only on normal samples can
be a limitation. In a recent work, Hendrycks et al. [36] introduced Outlier Exposure. This tech-
nique increases the model’s prediction performance by allowing during training the exposure of
the model to known samples of outliers. In their work, these known outliers are sampled from
large benchmark datasets (e.g., 80 Million Tiny Images [91] or ImageNet-22K [23]) that do not
intersect with the training set used for the origin anomaly detection task. The authors utilize
these external sets, which contain a huge amount of data because they are semantically very
different than in-distribution data; in their experiment, the approach helps the model to gener-
alize and detect unseen anomalies. Anomaly detection tasks on real-robot datasets differ from
the authors’ experiments; much smaller datasets are available, and anomalies can be semanti-
cally very similar to normal images. Thus, in Chapter 5 instead of using a large non-relevant
dataset, we use a portion of our Hazards&Robots dataset to add outliers during training; these
outliers are similar to the normal samples but contain hazards for the robot.

2.5 Anomaly Detection in Robotics

In the field of robotics, anomaly detection has been studied for specific purposes, albeit never
for generalized settings such as hazard detection. As for other robotic perception tasks, even
anomaly detection can be executed on readings from exteroceptive [97, 19], or propriocep-
tive [43, 9] sensors. Usually but not exclusively, the first case corresponds to detecting anoma-
lies on high-dimensional sensing data, as we require a lot of information to understand the
surroundings, while the second often refers to low-dimensional data, e.g., we are checking the
robot heart beat and thus we require fewer dimensions. In the next two subsections, we explore
the use of anomaly detection, with both shallow and deep approaches, in robotics, on different
data dimensionalities.

2.5.1 On low-dimensional data

Historically, anomaly detection in robotics has focused on using low-dimensional data streams
from sensors. A large amount of literature deals with detecting anomalies using low-dimensional
(but potentially high-frequency) data streams. On this type of data, a combination of hand-
crafted feature selection, Machine Learning, and, recently, deep learning models have been
used to find anomalies in and around robots.

Khalastchi et al. in two works [44, 43], focus on building an anomaly detection system, for
finding problems such as physical faults or software bugs that might compromise the autonomy

13 2.5 Anomaly Detection in Robotics

of unmanned vehicles. They propose ODDAD an online data-driven anomaly detector that takes
as input a series of low-dimensional sensory information, such as odometry, speed, heading,
or actuators’ internal sensory data. The data is then compared with a Mahalanobis distance
and a custom correlation detector to find anomalies. They use commercial Unmanned Aerial
Vehicles(UAV), a vacuum robot, and a flight simulator to test their method obtaining good
results in multiple scenarios.

Sakurada et al. [78] task themselves to build an anomaly detector for internal failures of
a spacecraft system. The authors benchmark different approaches on both real and artificial
telemetry data. They compare the performance of an autoencoder, a denoising autoencoder, a
linear PCA, and a kernel PCA. They find that autoencoders and denoising autoencoders are best
at detecting, even subtle, anomalies; they continue by stating the advantages of autoencoders of
learning non-linear correlations in the data without the need of manually defining a non-linear
kernel, as in the k-PCA. Finally, they explore the autoencoder’s latent space confirming that the
autoencoders have properly learned a concept of normality.

Birnbaum et al. [9] propose an approach for detecting cyber-attacks, sensor faults, or struc-
tural failures on Unmanned Aerial Vehicle (UAV) flight data. Their approach is based on compar-
ing hand-crafted descriptors of UAV behavior (including state, flight plan, and sensor readings)
to predefined behavioral profiles. To do so they use heuristic-based event matrices that are
then used as references for a bespoke detection algorithm. To test their approach they devel-
oped a simulation UAV behavior testing platform consisting of a flight sim, an autopilot, and
a set of software needed for flight and mission planning. With this system, they successfully
demonstrate that they can internally detect sensor failures and general behavioral anomalies
indicating an external attack.

Park et al. tackle anomaly detection in robot-assisted feeding, using Hidden Markov Mod-
els with hand-crafted features [70], or a combination of Variational Autoencoders and LSTM
networks [71]. The latter approach encodes a sequence of multi-modal sensory signals into a
latent space and then estimates the expected distribution of the received inputs: an anomaly
is detected when the negative log-likelihood of the current input, given an expected distribu-
tion, exceeds a certain threshold. In their test, they use a real robot arm and in addition, check
if their detectors can find anomalies in real-time. Even in this research, the data comes from
low-dimensional sources, namely 17 different internal sensors and 4 hand-crafted features.

2.5.2 On high-dimensional data

Anomaly detection on high-dimensional sensing data, like images, videos, or point clouds, is
used in many different robotics application domains. Due to the complexity of the data, the
anomalies detected by the following approaches often match the high-level semantic anomalies
described in a section before. An early approach [15] to anomaly detection on high-dimensional
data concerns the task of autonomous robot patrolling used to identify unexpected situations.
The authors apply image-matching algorithms to panoramic images of large databases of nor-
mal ones to detect anomalies. The detection algorithms use stereo vision techniques to find
anomalies and a particle filter to track them. Unfortunately, this approach is also sensible to
minor changes in the environment, such as a door open that was closed, and thus is suggested
only in indoor environments with few or no changes.

In a more recent approach, Christiansen et al. [19] propose a method to detect obstacles
and anomalies in the surroundings of autonomous agricultural robots. Their solution, called
DeepAnomaly, is based on a custom Convolutional Neural Network(CNN) architecture derived

14 2.6 Datasets for Anomaly Detection in Robotics

from AlexNet [51]. To find anomalies, the authors propose to use the ability of a CNN to extract
features of higher levels in the network’s deeper layers. They benchmark different approaches
to compare the features, at a specific network layer, of the input with the features collected
during training from the same layer. They compare more than 400 configurations to determine
the best combination of feature level and detector, proposing different solutions depending on
some high-level assumptions of the task, for example, the need to find bounding boxes for
anomalies or the need to run the model in real time. While this scenario is similar to ours, they
focus on finding only specific anomaly cases that are relevant to agricultural robots.

The most similar work to ours is from Wellhausen et al. [97]. Their work is a cornerstone for
our early research as they extensively explore, across three approaches, solutions for building a
system for safe navigation for a legged ANYmal [40] robot. Similar to us, they assume that the
robot has to travel in unknown environments, and the system they design is precisely tasked
with the objective of avoiding foothold locations on terrain whose appearance is anomalous.
As most of the research is in anomaly detection, even in this paper, the setting is unsupervised.
The models proposed are trained to detect anomalies of future footholds. They do so by using
foothold projections over camera images. In this work, the authors compare an undercomplete
autoencoder, a Deep SVDD model [75] and Real-NVP [24] one; the last two share with the
autoencoder’s encoder to extract features from the input data. The sensory data used by the
models is multi-modal; using multiple sorties with no problems visible, the authors collect in-
formation not only from the front-facing RGB cameras but also from the onboard depth sensors
thus collecting RGB-D images. Then the information about the footholds is retroactively pro-
jected onto the RGB-D images producing a set of image patches where the robot legs walked
successfully. In the final comparison, the Real-NVP model performed best, closely followed by
the autoencoder. Finally, they demonstrate that the model can run in real-time on a Jetson
board. Compared to our work, Wellhausen et al. focus on finding anomalies relevant only to
robot leg placement.

2.6 Datasets for Anomaly Detection in Robotics

A large portion of the anomaly detection literature [36, 75, 94] relies for the experiments, on
datasets built for image classification, such as MNIST [54], ImageNet [23, 53], CIFAR [50],
and SVHN [67]. What is often done, is to define an anomaly as an instance sampled from a
different dataset than the one used for training, or an instance of a given class that is not seen
in the training set. This is not a good model for realistic anomalies in robotics applications like
the scenario we focus on. Anomalous frames might differ from normal ones in subtle ways,
like a crack in the camera lens. To properly develop and evaluate anomaly detection methods
for robotic applications, researchers need datasets that represent realistic anomalies, as well
as large amounts of normal images with their expected variability. Unfortunately, most of the
recently-released datasets, while tackling the data collection issue, focus explicitly on specific
sub-tasks of anomaly detection [10, 97, 8].

MVTec [8] is specific to defects of industrial goods; it is composed of 5354 RGB images of
15 different objects captured in controlled scenarios in an industrial production environment.
Fishyscapes [10], built upon Cityscapes [22], focuses on segmenting anomalous objects in im-
ages acquired by self-driving vehicles. It includes both anomalous images acquired in real-world
settings as well as synthetically generated data; dense segmentation masks of anomalous objects
are provided. Wellhausen et al. [97] propose ANNA, a dataset for detecting visual anomalies

15 2.7 Conclusions

in ground patches, to predict terrain traversability for legged robots; the dataset is built from
observations acquired by robots traveling on different terrains. None of these provide a general
dataset that can be used for multiple robotic applications and is thus compatible with our haz-
ard detection task. Such a dataset would allow research towards general approaches instead
of ad-hoc ones, that is why in the next Chapter we introduce our dataset for the task of hazard
detection.

2.7 Conclusions

In this Chapter, we saw that anomaly detection concerns finding anomalous patterns in data
given a model of normality [16, 76]. Its applications cover diverse fields: surveillance [15],
intrusion detection [9], medical imaging [80], fault detection [43], agriculture [19] and au-
tonomous robot [97]. In literature, these are achieved both using low-dimensional data [44, 43]
or high-dimensional one [15, 19]. In robotics, anomaly detection is used to detect anomalies
in the environment [97, 19] or in the robot itself [43, 9] with diverse derived objectives such
as patrolling or safe robot navigation. Even if the task of visual anomaly detection in robotics is
gaining track, there is still a lack of a general-purpose dataset to study new approaches. In the
following Chapters, we will introduce our dataset for hazard detection and then focus our anal-
ysis on finding anomalies that might become hazards for a robot using deep learning methods
based on information from exteroceptive visual sensors such as cameras.

16 2.7 Conclusions

Chapter 3

Hazard and Robots: A Novel Dataset
for Anomaly Detection for Mobile
Robotics

In the previous Chapters we introduce the key concepts and the state-of-the-art methods regard-
ing anomaly detection and visual anomaly detection, with a focus on robotic hazard detection;
in Section 2.6 we specifically discussed the limitations of current datasets available for the task
of visual anomaly detection for mobile robots. While some exist, none are compatible with
our main task of hazard detection. Motivated by the lack of datasets to train a deep learning
model for visual anomaly detection, in this Chapter, we introduce our dataset, purposely made
to explore both visual anomaly detection for robots and the task of hazard detection without
assumptions on the robot mission or robot type. The dataset we propose has been released
multiple times, for the main part of this Chapter we will focus on the last one (release v3.1),
with more information on the other releases in Section 3.6.

3.1 Motivation and Objective

In Chapter 2 we discussed the limitations of existing datasets regarding anomaly detection
in robotics. Even outside of robotic anomaly detection datasets, state-of-the-art models and
methods [49, 46, 76, 10] for anomaly detection in images are often trained and tested on
datasets that strongly differ from what is encountered by autonomous robots [8, 80, 76] in a
real scenario. These are often limited to the paramount task the researchers wanted to solve.
We propose to do the inverse, by defining a dataset that fits no particular robotic task and
instead can be adapted to different ones. We decide to start by focusing on indoor scenarios.
Indoor scenarios can be relevant for a diverse selection of robotic tasks, and anomaly (i.e.
hazard) detection can be adapted to different cases. For example, in robotic safe navigation
anomalies might represent potential hazards to avoid, or for robot patrolling, anomalies are
interesting events to report, or even in robotic industrial inspection where anomalies might
become costly problems such as a pipeline leaking a liquid. As we want to study anomaly
detection independently of the specific task that the robot may be doing, we set ourselves to
collect a dataset to act as a proxy of realistic robotic settings. The dataset we collected makes

17

18 3.2 The Dataset

it possible to develop and benchmark anomaly detection systems for robots that use cameras
indoors.

3.2 The Dataset

The dataset we propose is called Hazard&Robots, and across different releases, it comprises two
robots, a drone and a wheeled robot, and three scenarios. The dataset differs from well-known
anomaly detection datasets [8, 80] as those are usually collected in fixed, controlled settings of-
ten regarding industrial processes and thus not relevant for robotics. Ours is collected by mobile
robots with environmental variables such as reflections, changes in illumination, or variations
in the surroundings. The first two scenarios have been developed in collaboration with our in-
dustrial partner Hovering Solutions, under the EU Horizon 2020 1-SWARM project. Hovering
Solutions is a company specializing in visual inspection and 3D mapping of inaccessible tunnels
and pipes. In these scenarios, we utilize a drone to fly inside underground tunnels (in a simula-
tion) and in a factory space (with a real drone). With these, we want to replicate the inspection
process of a custom-made industrial drone that, due to the environmental conditions has no
connection to the outside. The drone, while accomplishing its missions with complete auton-
omy, might encounter hazards such as raindrops due to condensation on the tunnel roof, small
roots coming from the ceiling, or dust that might reduce the navigation system functionalities.
The drone has an obstacle and navigation system composed of a planar lidar and a camera,
but due to the unpredictability of underground tunnels or the presence of foreign objects in the
factory space, this system cannot be solely relied upon thus a hazard detection system has to
be run onboard. These scenarios are representative of the real use cases of our partner. The
third, and main, scenario is composed of video frames collected by a DJI Robomaster S1 that
traverses the USI-SUPSI Est campus’ corridors. In this scenario, we imply that the Robomaster
S1, a ground-wheeled robot, is tasked to patrol our university’s corridors. Note that this as-
sumption was made only to simplify the collection process but does not influence the dataset
content per se. The robot used is fitted with a monocular RGB camera on top of a controllable
gimbal. The robot might face multiple situations that either can cause damage to the robot
or might be of interest for the patrolling task, thus a hazard detection system is needed. Our
dataset is available on Zenodo [62]; at the time of the writing, has been downloaded more than
470 times.

The dataset is composed of 324,408 RGB labeled frames, and corresponding 512-sized fea-
ture vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in
20 different anomaly classes. Thanks to its large number of frames, the dataset can be used
to train and test current and novel visual anomaly detection methods such as those based on
deep learning vision models, it can be used by applied researchers to replicate real robot issues
and test their solutions or by theoretical researchers to benchmark their models on a realistic
anomaly detection task.

3.3 Latest Release (v3.1)

As anticipated, the dataset has different releases. In the latest one, the data is extracted from
videos recorded with a DJI Robomaster S1 front-facing camera. The ground robot, controlled
by a human operator, traverses university corridors. With the robot we explore 6 different
university corridors; for these environments, a normal situation corresponds to a tidy corridor

19 3.4 Data Description

with no standing humans and all windows and doors closed. To vary the data recorded and
avoid biases, the corridors are passed multiple times, at different times of day and night, some
with varying furniture distribution. Regarding anomalies, we considered anomalies including
the presence of humans (walking or standing), unexpected objects on the floor, defects to the
robot, and simulated accidents (e.g. spilled water). The dataset is split into training (only
normal), training (mixed), validation, and test sets. The dataset provides both images and pre-
extracted feature embeddings to allow a larger variety of approaches to the task of anomaly
detection.

3.4 Data Description

The dataset in the final version (V3.1) is composed of 8 files:

• README.md the readme files containing some basic information about the dataset,

• embeddings.zip a zip file containing 324,408 512-sized feature vectors extracted using a
CLIP ViT-B/32 from the images. The vectors are divided into 4 PyTorch .pt files for fast
loading,

• metadata.zip a zip file containing the annotation files for the dataset,

• training_set.zip a compressed folder containing 47,157 video frames,

• training_mixed_set.zip a compressed folder containing 144, 603 video frames,

• validation_set.zip a compressed folder containing 2,801 video frames,

• test_set.zip a compressed folder containing 129, 846 video frames,

• code.zip a compressed folder containing the code used in the creation of the frames, for
reading the dataset and additional custom PyTorch dataset Classes for both the embed-
dings and images.

Regardless of the representation in frames or embeddings, the data is split into four disjoint
sets:

• Training, containing only normal samples,

• Training_mixed, containing both normal and anomalous samples,

• Validation, containing only normal samples,

• Testing, containing normal and anomalous samples.

The training sets are used for training anomaly detection models and the validation set for per-
forming model selection, for example determining when to stop training a model. The testing
set can be used to compute quantitative performance metrics for the anomaly detection prob-
lem. In version 1 of the dataset, we include a qualitative testing set that can be used to analyze
how the model outputs react to a video stream as the robot traverses normal and anomalous
environments, more info is in Section 3.6.1.

A summary of the four sets is in Table 3.1. Note that each split has a set of samples from
each corridor and the samples are not repeated across training, validation, and testing sets.

20 3.4 Data Description

Set Total samples Anomalous samples

Training (normal) 47,157 0
Training (mixed) 144,603 94,362

Validation 2,802 0
Test 129,846 84,576

Table 3.1. Dataset split details

The compressed folders (<set_name>_set.zip) contain JPEG images with a separate se-
quential numeration for each folder. The file naming follows this style: 000000_512_512.jpg

is the 1st sample of the set (the file numeration starts at 0) and 001234_512_512.jpg is the
1235th sample in the set.

In embeddings.zip, we provide four PyTorch files and four Numpy files; each file repre-
sents one of the sets. The naming convention is <set_name>_embs.pt for PyTorch files and
<set_name>_embs.npy for Numpy ones. When loaded with the dataset classes provided in the
code.zip, the result is a PyTorch tensor of shape (set_size, 512); for example, for the vali-
dation set the shape of the tensor in validation_embs.pt is (2802, 512). Be sure to use the
correct code provided for Numpy or PyTorch embeddings. These vectors correspond to embed-
dings of the image encoder component of the CLIP model ViT-B/32 publicly provided by Open
AI [73].

In the metadata.zip compressed folder we provide 6 CSV files and 2 TXT files. Two CSV
files contain the frame labeling; each CSV file provides two columns; frame_id with the sample
ids and label with the label id of the sample.

• test_frames_labels.csv,

• training_mixed_frames_labels.csv,

The other four CSV files contain the corridor labeling for each sample of a set; each CSV
provides a frame_id column and an env column; the latter indicates the corridor ID of a sample.

• training_set_frames_envs.csv,

• training_mixed_set_frames_envs.csv,

• validation_set_frames_envs.csv,

• test_set_frames_envs.csv,

The two TXT files contain the mapping between IDs and names of labels and environments:

• labels_mapping.txt,

• envs_mapping.txt.

The six corridors used for the data recording can be grouped into three classes called envi-
ronments; the environments are: long, short, and underground. Long corridors have a wooden
wall, short corridors are larger and have chairs and tables, and underground corridors are con-
crete corridors with maintenance tubing and cabling on the ceiling. In the dataset we provide
21 different classes, in Table 3.2 we list all labels, their IDs, and the number of samples across
all splits. In Figure 3.1 we show an example for each class of anomaly and some examples of
normal data in the different corridors.

21 3.4 Data Description

Table 3.2. Classes of Anomalies in the dataset

Id Name Samples in Training Samples in Testing

0 Normal

47,157 (training)

45,270
+50,241 (training mixed)
+2,802 (validation)
=100,200

1 Box 5,868 4,976
2 Cable 5,460 5,201
3 Cones 5,621 4,619
4 Debris 4,474 4,588
5 Defects 13,295 12,056
6 Door 707 561
7 Floor 4,751 4,305
8 Human 14,318 13,358
9 Misc 597 236

10 Tape 6,014 5,604
11 Trolley 4,811 4,236
12 Clutter 659 538
13 Foam 174 51
14 Sawdust 253 136
15 Shard 39 109
16 Cellophane 372 395
17 Screws 169 157
18 Water 211 93
19 Obj. on

Robot
12,551 11,716

20 Obj. on
Robot 2

14,018 11,641

22 3.5 Data Acquisition

Figure 3.1. Samples of all anomalies and 5 samples of normal frames from the Haz-
ards&Robots dataset. (Figure in color)

3.5 Data Acquisition

We record the feed of a DJI Robomaster front camera on a microSD or via the Robomaster
app. The robot is teleoperated in more than 550 sorties, in 6 different corridors located on two
different floors of a university campus. In all recordings, the robot moves at the center, along
the length of the corridor.

The DJI Robomaster S1 provides a 120deg field of view camera with a maximum resolution
of 2560 × 1440. The camera, capable of recording full-HD videos at 30fps, is mounted on a
gimbal. In addition, the robot is fitted with omnidirectional wheels, and combined with the
gimbal, it allows for a decoupling of the direction of movement from the camera’s pointing di-
rection. This was exploited, for example, to simulate problems with the robot; frames acquired
in this condition are labeled as defects.

The data collection was structured in multiple phases, all with the same setup, to capture
the environments in different conditions. The resulting recordings vary in duration, location,
presence of anomalies, illumination, and corridor traversing direction. In normal videos, no
anomalies are present, while in anomalous ones we manually place anomalies making sure
that anomalies are always visible and identifiable. In longer sorties the robot fully traverses
random sections of the corridor, instead, in short ones, the anomalies are placed at 2m from a
start position. Then, the robot moves towards the anomaly while keeping it in frame, stopping
at 5cm and moving back to the starting position. After a set of sorties is recorded, the recordings
are divided into frames; these are then resized and from the resized frames the feature vectors
are extracted.

Note that the very concept of an anomaly in robotic perception is highly subjective and
application-dependent [9, 19, 97]. Whether a given situation should be considered an anomaly
depends on the features of the robot and its task; for example, consider a robot patrolling corri-
dors with floors normally clear of objects; the presence of screws and bolts littering the ground
could be hazardous for a robot with inflated tires that could get punctured, but completely ir-
relevant for a drone or legged robot. On an orthogonal dimension, some applications might
be interested in determining anomalies regardless of whether they pose a hazard to the robot:
in a scenario in which a robot is patrolling normally empty tunnels, finding anything different
in the environment could be a sign of an intrusion and should be detected. The appearance

23 3.6 Additional Releases of The Dataset

normal dust roots roots wet

Tu
nn

el
s

normal mist mist tape tape

Fa
ct

or
y

normal human floor screws defect

C
or

ri
do

rs

normal cable cellophane hang. cable water

C
or

ri
do

rs

Figure 3.2. The testing datasets are composed of normal images and images of different
anomaly classes.

of anomalies in forward-looking camera streams is also dependent on the distance from the
robot; wires or other thin objects that might pose a danger to a robot could be simply invisible
if they are not very close to the camera. Our labeled sets are manually curated, we defined
the recording process to be as objective as possible but still, on certain occasions, and in the
previous releases of the dataset, we used our best judgment to determine whether to consider
a frame anomalous or not. For example, frames with anomalies that are not clearly visible in
the 512× 512 full-resolution images are excluded from the testing set.

3.6 Additional Releases of The Dataset

On the Zenodo dataset page it is possible to select previous releases of the dataset; release
version 1, for example, contains data coming from a drone and a simulated drone. From re-
lease version 2 onwards we focused only on collecting data, methodically, using only the DJI
Robomaster S1. All the versions of the dataset are complementary.

24 3.6 Additional Releases of The Dataset

3.6.1 Release v1

The first release includes a large number of grayscale or RGB frames with a 512 × 512 px
resolution. For each dataset, we define four subsets: a training set, a validation set, composed
of only normal frames a labeled testing set, and an unlabeled qualitative testing set, consisting
of one or more continuous data sequences acquired at approximately 30 Hz, depicting the
traversal of environments with alternating normal and anomalous situations. Only in the first
version of the dataset did we also split it into three scenarios: Tunnels, Factory, and Corridor.
The latter is the only one present in the other versions.

Tunnels The scenario, provided by Hovering Solutions Ltd, is composed of grayscale frames
from simulated drone flights along procedurally generated underground tunnels presenting
features typically found in aqueduct systems, namely: random dimensions; random curvature
radius; different structures on the floor; tubing, wiring, and other facilities attached to the
tunnel walls at random positions; uneven textured walls; various ceiling-mounted features at
regular intervals (lighting fixtures, signage). The drone flies approximately along the centerline
of the tunnel and illuminates the tunnel walls with a spotlight approximately coaxial with the
camera. Both the camera and the spotlight are slightly tilted upwards.

This scenario is composed of 143070 frames: 72854 in the training set; 8934 in the vali-
dation set; 57081 in the quantitative labeled testing set (40% anomalous); 4201 in the qual-
itative testing sequences. Three anomalies are represented: dust, wet ceilings, and thin plant
roots hanging from the ceilings (see Figure 3.2). These all correspond to hazards for quadro-
tors flying real-world missions in aqueduct systems: excessive amounts of dust raised by rotor
downwash hinder visual state estimation; wet ceilings, caused by condensation on cold walls
in humid environments, indicate the risk of drops of water falling on the robot; thin hanging
roots, which find their way through small cracks in the ceiling, directly cause crashes.

Factory This scenario contains grayscale frames recorded by a real drone, with a similar setup
to the one simulated in the Tunnels scenario, flown in a testing facility (a factory environment)
at Hovering Solutions Ltd. During acquisition, the environment is almost exclusively lit by the
onboard spotlight.

This scenario is composed of 12040 frames: 4816 in the training set; 670 in the valida-
tion set; 6001 in the quantitative testing set (53% anomalous); 553 in the qualitative testing
sequences. Two anomalies are represented: mist in the environment, generated with a fog ma-
chine; and signaling tape stretched between two opposing walls (Figure 3.2). These anomalies
represent large-scale and small-scale anomalies, respectively.

3.6.2 Corridors

This scenario contains RGB frames recorded by the same DJI robot of the final version of the
dataset. The corridors have a mostly uniform, partially reflective floor with few features; various
side openings of different sizes (doors, lifts, other connecting corridors); variable features on
the ceiling, including service ducts, wiring, and various configurations of lighting. The robot is
remotely teleoperated during data collection, traveling approximately along the center of the
corridor.

This scenario is composed of 52607 frames: 25844 in the training set; 2040 in the vali-
dation set; 17971 in the testing set (45% anomalous); 6752 in qualitative testing sequences.

25 3.7 Anomaly Categorization

8 anomalies are represented, ranging from subtle characteristics of the environment affecting
a minimal part of the input to large-scale changes in the whole image acquired by the robot:
water puddles, cables on the floor; hanging cables from the ceiling; different mats on the floor,
human presence, screws and bolts on the ground; camera defects (extreme tilting, dirty lens)
and cellophane foil stretched between the walls.

3.6.3 Releases v2 and v3

The releases version 2 and 3 of the dataset are composed of frames acquired by the Robomaster
S1 along the university corridor; these versions can be seen as a subset of the final version

3.7 Anomaly Categorization

In our work on the dataset, we also expand on the anomaly categorization that is proposed in
the literature. Using our Hazards&Robots dataset v1, we explore new ways of classifying an
anomaly based on its characteristics.

3.7.1 Background

In Chapter 2 we already explored an anomaly classification proposed by Ruff [76].

Figure 3.3. Summary of the anomalies represented in the dataset, with an example of each.
The top row reports the score of our model for each scenario. Below: the categorization of
the dataset’s anomalies along three of the four proposed axes.

3.7.2 Categorization of Anomalies

We propose to categorize visual anomalies encountered by mobile robots during their operation
along four independent axes. The first, following Ruff et al. [76], differentiates low-level sen-
sory and high-level semantic anomalies. Low-level anomalies are described by features close
to the image space, such as image brightness, smoothness, noise, and texture; one example of
such anomaly occurs when the robot suddenly finds itself in the dark or when it is blinded by
direct light. High-level anomalies refer to the semantic contents of the image: examples include
the observation of a pressure gauge reporting a different value than usual, or of a puddle of
liquid on the ground.

The second axis represents whether an anomaly is a hazard to the robot. This is specific
to the robot’s characteristics (an oil puddle on the floor might represent a hazard for a ground
robot but not for a drone) and its task (the puddle is not dangerous unless it lies on the robot’s
path).

26 3.8 Conclusions

The third axis differentiates anomalies that are relevant to the robot mission and anomalies
that are not. For example, a patrolling robot might want to detect and report the fact that a door
that is usually closed is observed to be open, whereas a delivery robot should not be affected
by this observation unless it impacts its path planning.

The fourth axis discriminates visual anomalies that are geometric in nature from those that
are not. Geometric anomalies have a well-defined 3D shape in the robot environment (e.g.
a never-before-seen object in a normally-free corridor) or consist of changes in the position
or shape of a part of the environment (a wall that collapsed). Non-geometric anomalies are
anomalies that, while perceivable using an RGB camera, would be undetectable with an ideal
depth sensor: for example, a puddle on the ground; plaster rubble scattered across a building
floor; dust, fog, or smoke; a wet ceiling in a tunnel.In Figure 3.3 we show examples of all the
represented anomalies in version 1 of the dataset. We also classify anomaly types along the axes
introduced before. The third axis is not represented in the Figure since it is mission-dependent
and our dataset is gathered with no specific task in mind.

3.8 Conclusions

In this Chapter, we described our novel open-source dataset, Hazards&Robots. The dataset
on its latest release is composed of more than 320000 labeled RGB frames with a resolution
of 512× 512 pixels and their relative 512 dimensional feature embedding. The latest release
focuses on data collected by a wheeled robot that explores the indoor corridors of a university
building. Other releases also feature a drone real industrial facility and a simulation of a drone
that traverses underground tunnels. We collected and publicly released the dataset as, to the
best of our knowledge, this is the first one made for the task of hazard detection in the context
of robotics. Finally, we expanded the anomaly categorization first explained in Chapter 2, by
introducing robotic relevant categories; we think that these might be helpful to better analyze
the hazard detection requirements of a robot application.

In the following Chapters, we will use this dataset in its different releases to train different
deep-learning models for achieving our objective of building a hazard detection system.

Chapter 4

Using Visual Anomaly Detection as a
Proxy for Mobile Robot Hazard
Detection

In the previous Chapter, we introduced our dataset Hazards&Robots; we described the motiva-
tion and acquisition of a hazard detection visual dataset purposely made for studying the task
for robots. In this Chapter, we propose our solution for employing visual anomaly detection
techniques to detect hazards. We will use our dataset for training and testing our models. Var-
ious anomalies are considered, spanning from camera malfunctions to environmental hazards:
some affect the acquired image globally; others only impact a small portion of it. We benchmark
an anomaly detection method based on autoencoders operating at different scales on the input
frames. Finally, we deploy our best model on two robots in two separate demonstrators; with
the demonstrators, we show that our solution is reliable and can be used in real-time hazard
detection.

4.1 Background

Many emerging applications involve a robot operating autonomously in an unknown environ-
ment; the environment may include hazards, i.e., locations that might disrupt the robot’s op-
eration, possibly causing it to crash, get stuck, and more generally fail its mission. Robots are
usually capable of perceiving hazards that are expected during system development and there-
fore can be explicitly accounted for when designing the perception subsystem. For example,
ground robots can typically perceive and avoid obstacles or uneven ground.

In this Chapter, we study how to provide robots with a different capability: detecting unex-
pected hazards, potentially very rare, that were not explicitly considered during system design.
Because we don’t have any model of how these hazards appear, we consider anything that is
novel or unusual as a potential hazard to be avoided.

Animals and humans exhibit this exact behavior [85], known as neophobia [66]: “the avoid-
ance of an object or other aspect of the environment solely because it has never been experi-
enced and is dissimilar from what has been experienced in the individual’s past” [87]. We argue
that autonomous robots could benefit from implementing neophobia, in particular whenever

27

28 4.2 Experimental Setup

Figure 4.1. A Robomaster detects an anomaly in the camera frame: cautiousness is re-
quired.

the potential failure bears a much higher cost than the avoidance behavior. Thus, for example,
for a ground robot, it makes sense to avoid unusual-looking ground [97] when a slightly longer
path on familiar ground is available; or a planetary rover might immediately stop a planned
trajectory if something looks odd, waiting for further instructions from the ground control.

Our experiments are motivated by a similar real-world use case in which a quadrotor equipped
with sophisticated sensing and control traverses underground tunnels for inspection of aqueduct
systems. During the flights, that might span several kilometers, the robot is fully autonomous
since it has no connectivity to the operators; they wait for the robot to either reach the pre-
determined exit point or — in case the robot decides to abort the mission — backtrack to the
entry. In this context, a crash bears the cost of the lost hardware and human effort, but most
importantly the lost information concerning the hazard that determined the failure, remains
unknown. It then makes sense to react to unexpected sensing data by aborting the mission
early and returning to the entry point;1 operators can then analyze the reported anomaly: in
case it is not a genuine hazard, the system can be instructed to ignore it in the current and
future missions and restart the exploration.

4.2 Experimental Setup

In this Chapter, we use the release v1 of our dataset described in Section 3.6.1 to create disjoint
sets for training validation and testing.

4.2.1 Anomaly Detection on Frames

We follow our definition of visual anomaly detection task from Section 2.2 and train an anomaly
detector to map a frame (512 × 512) to an anomaly score. The frame-level anomaly detec-
tor relies on a patch-level anomaly detector (see Figure 4.2), which instead operates on low-
resolution inputs (64× 64), which is a typical input size for anomaly detection methods oper-
ating on images [97, 42].

First, the frame is downsampled (using local averaging) by a factor s ∈ {1, 2,4,8}; we will
refer to the respective models as S1, S2, S4 and S8. The resulting downsampled image, with

1Similarly, retention of information following encounters with novel predators is one of the recognized evolutionary
advantages of neophobic animals [65].

29 4.2 Experimental Setup

Figure 4.2. Anomaly detection model: using an autoencoder to compute the patch-level
anomaly scores, which are aggregated in a frame-level score.

resolution 512/s × 512/s, is standardized to zero mean and unit variance, independently for
each channel; we then extract Np 64× 64 patches, at random coordinates, such that they are
fully contained in the downsampled image. The patch-level anomaly detector is applied to
each patch, producing Np anomaly scores; these are aggregated together (e.g., computing their
average) to yield the frame-level anomaly score.

Note that in the case of S8, Np ≡ 1 since a unique patch can be defined on a 64 × 64
downsampled image. This corresponds to the special case in which the whole frame (after
downsampling) is directly used as input to the patch-based detector. This approach is simple
and attractive but is unsuitable for detecting small-scale anomalies since it can not leverage the
full resolution of the frame.

4.2.2 Patch-Level Anomaly Detector

Patch-level anomalies are detected with a standard approach based on the reconstruction error
of an autoencoder. The encoder part operates on a 64 × 64 input and is composed of four
convolutional layers with a LeakyReLU activation function; each layer has a number of filters
that is double the number of filters of the previous layer; we start with F 3× 3 filters for the
first layer. Each Convolution has stride 2 thus halving the resolution of the input. The neurons
of the last layer of the encoder are flattened and used as input to a fully connected layer with B
neurons (bottleneck); the decoder is built in a specular manner to the encoder, and its output
has the same shape as the encoder’s input; the output layer has a linear activation function,
which enables the model to reconstruct the same range as the input. During inference, the
patch-based anomaly detector accepts a patch as input and outputs the Mean Absolute Error
between the input patch and its reconstruction, which we interpret as the patch anomaly score.

30 4.2 Experimental Setup

4.2.3 Training

For a given scale s, the autoencoder is trained as follows: first, we downsample each frame
in the training set by a factor s; then, as an online data generation step, we sample random
patches completely contained in the downsampled frames.

We use the Adam [45] optimizer to minimize the mean squared reconstruction error, with
an initial learning rate of 0.001, which is reduced by a factor of 10 in case the validation loss
plateaus for more than 8 epochs. Because the size of the training set of different datasets is
widely variable, we set the total number of epochs in such a way that during the whole training,
the model sees a total of 2 million samples; this allows us to better compare results on different
datasets.

The approach is implemented in PyTorch and Python 3.8, using a deep learning workstation
equipped with 4 NVIDIA 2080 Ti GPUs; training each model takes about 1h on a single GPU.

Table 4.1. AUC values for models at all scales

Scale Avg Tunnels Factory Corridors

al
l

al
l

du
st

ro
ot

w
et

al
l

m
is

t

ta
pe

al
l

w
at

er

ce
llo

ph
an

e

ca
bl

e

de
fe

ct

ha
ng

.
ca

bl
e

flo
or

hu
m

an

sc
re

w
s

S8 0.82 0.82 0.54 0.76 0.87 0.90 0.95 0.48 0.74 0.63 0.66 0.70 1.00 0.44 0.85 0.67 0.48
S4 0.62 0.89 0.62 0.79 0.94 0.24 0.25 0.17 0.73 0.81 0.70 0.81 1.00 0.41 0.38 0.73 0.30
S2 0.60 0.88 0.63 0.80 0.93 0.21 0.20 0.30 0.71 0.78 0.70 0.75 0.99 0.50 0.51 0.56 0.40
S1 0.55 0.85 0.61 0.80 0.88 0.12 0.10 0.25 0.69 0.72 0.73 0.68 0.90 0.60 0.59 0.51 0.55

4.2.4 Metrics

We evaluate the performance of the frame-level anomaly detector on the testing set of each
dataset. In particular, we quantify the anomaly detection performance as if it was a binary
classification problem (normal vs anomalous), where the probability assigned to the anomalous
class corresponds to the anomaly score returned by the detector. This allows us to define the
Area Under the ROC Curve metric (AUC); an ideal anomaly detector returns anomaly scores
such that there exists a threshold t for which all anomalous frames have scores higher than
t, whereas all normal frames have scores lower than t: this corresponds to an AUC of 1. An
anomaly detector returning a random score for each instance, or the same score for all instances,
yields an AUC of 0.5. The AUC value can be interpreted as the probability that a random
anomalous frame is assigned an anomaly score larger than that of a random normal frame.
The AUC value is a meaningful measure of a model’s performance and does not depend on the
choice of threshold.

For each model and dataset, we compute the AUC value conflating all anomalies, as well as
the AUC individually for each anomaly (versus normal frames, ignoring all other anomalies).

31 4.3 Experimental Results

4.3 Experimental Results

4.3.1 S8 Model Hyperparameters

Figure 4.3a explores the choice of the bottleneck size B for model S8. Increasing B reduces
reconstruction error for both anomalous and normal data; the reconstruction error best dis-
criminates the two classes (higher AUC, higher average gap between the two classes) for in-
termediate values of B (16 neurons): then, the Autoencoder can reconstruct well normal data
while lacking the capacity to properly reconstruct anomalous samples. These findings apply to
all three datasets. Figure 4.3b investigates a similar capacity trade-off: autoencoders with a
small number of filters for the first convolution layer (first layer size) are not powerful enough
to reproduce well even normal samples, therefore have lower discriminating performance. For
the rest of the Section, we only report results for bottleneck size B = 16 and first layer size
F = 128.

4.3.2 Patch Aggregation

Figure 4.3c:top explores the impact of Np on the anomaly detection performance of model
S2; we observe that, for the Tunnels and Corridors scenarios, the performance increases as Np

increases. This is expected, as more patches are processed and aggregated to compute the
frame-level score. Only for Tunnels, S2 outperforms S8 for 10 or more patches.

On the contrary, for the Factory scenario, the model S2 performs worse than chance at de-
tecting anomalies and assigns lower scores than normal data. this is due to the testing set being
dominated by the mist anomaly, which is not detectable at low scales as discussed previously.

Figure 4.3c:bottom reports how computing the 0.7-0.8 quantile offers a slightly better ag-
gregation than averaging.

4.3.3 Scales and Anomalies

Table 4.1 summarizes the most important results on all model scales, scenarios, and anomalies.
We note that most anomalies are best detected by the full-frame approach S8; this is especially
true for large-scale anomalies that cover a significant portion of the frame, such as mist for Fac-
tory, or human and floor for Corridors. In contrast, S8 underperforms for small-scale anomalies,
that cover few pixels of the downsampled image (e.g., dust and roots for Tunnels; cellophane,
water, and hanging cable for Corridors); in this case, small-scale models sometimes have an
advantage over S8.

In contrast, we observe that small-scale models struggle with the large-scale mist anomaly,
returning consistently lower anomaly scores than normal frames, which yields AUC values well
below 0.5. Figure 4.4 compares how S1 and S8 reconstruct a mist frame: clearly, S8 fails to
capture the large-scale structure of mist, which yields high reconstruction error as expected in
an anomalous frame; in contrast, since individual high-resolution patches of the mist frame are
low-contrast and thus easy to reconstruct, the S1 model yields very low reconstruction error
and, thus, low AUC.

Some anomalies, such as defects for Corridors, are obvious enough that models at all scales
can detect them almost perfectly.

32 4.3 Experimental Results

0
0.1
0.1
0.2
0.2

sc
or
e

0

0.1

0.2

0.3

sc
or
e

0
0.2
0.4
0.6

sc
or
e

0.00
0.02
0.04
0.06

∆
sc
or
e

1 4 16 64

0.6

0.8

1

bottleneck size B

A
U
C

1 4 16 64

bottleneck size B

normal anomalous

Tunnels Factory Corridors Average

Tunnels

Factory

Corridors

in
p
u
t

o
u
tp
u
t

0
0.1
0.1
0.2
0.2

sc
or

e

0
0.1
0.2
0.3

sc
or

e

0
0.2
0.4
0.6

sc
or

e

0.00
0.02
0.04
0.06

∆
sc

or
e

1 4 16 64

0.6

0.8

1

bottleneck size B

A
U

C

1 4 16 64

bottleneck size B

??

Tunnels

Factory

Corridors

in
pu

t

ou
tp

ut

(a) Results for different autoencoder’s bottleneck
sizes for model S8. Top two rows: for the same
two samples (normal in green, anomalous in red),
autoencoder reconstructions. Center: score distri-
butions over the testing set. Bottom: mean score
difference between anomalous and normal samples
and AUC of the anomaly detector.

1 10 100
0

0.2
0.4
0.6
0.8

1

first layer size F

A
U

C

(b) Results for model S8 for Autoencoders with
different first layer sizes.

1 10 100
0

0.2
0.4
0.6
0.8

1

number of patches Np
A

U
C

0 25 50 75 100
0

0.2
0.4
0.6
0.8

1

quantile

A
U

C

(c) Results for model S2 when aggregating the
scores of multiple patches extracted from each
frame. Top: AUC, when aggregating by averag-
ing, for different numbers of patches, compared
to S8 (dotted). Bottom: AUC, when aggregating
250 patches by computing a quantile (solid) or by
averaging (dashed).

Figure 4.3. Experimental results

4.3.4 Run-time Evaluation

A quadcopter runs the S8 model to detect anomalies on board. In the experiment, the robot
captures a camera frame, computes an anomaly score, and raises an alarm when the score passes
a predefined threshold. The model successfully recognizes unforeseen hazards and allows the
drone to avoid them on multiple runs. Figure 4.5 illustrates a representation of the execution
of model S8 on a sequence of frames that are part of the qualitative testing set for Factory. In
the example shown in the Figure, the drone that collects the data is manually piloted, first,
it traverses a long area of mist and later it stops in front of a small signaling tape. On all
occasions, the model correctly identifies the anomalies. We manually annotate the ground
truth presence of hazards such as mist (first red interval) and tape (second red interval) and
the model predictions match these areas.

33 4.4 Demonstrators

Corridors, defectFactory, mistTunnels, dust

Figure 4.4. Comparison between S1 and S8: pairs of identical input images representing
an anomaly (top row); autoencoder’s outputs (central row) for S1 (left) and S8 (right); the
absolute value of the difference between input and output (bottom row, using a colormap
where yellow is high and blue is low). Only for this illustration, for S1 we regularly sample
64 patches to cover the whole input image, and we use the output patches to compose a
full-resolution image.

4.4 Demonstrators

Using our model we develop a hazard detection module to be deployed on a real robot. With
this software, we built two separate demonstrators detailed below.

4.4.1 Wheeled Robot Demonstrator

The first demonstrators consist of the same DJI Robomaster S1 used for collecting the dataset
in Chapter 3. We connect the robot to a nearby laptop to run the model while we are manually
teleoperating the robot; if a hazard is detected, the control is taken away from us and the robot
stops. For deploying the model on the laptop. we use a code that loads one of the trained
models described before, and, at runtime, maps incoming images to a real-valued anomaly
score. Additionally, we provide a graphical interface to inspect the inner workings of the system.
We extensively use the GUI we developed to test the behavior of our ground robot equipped
with the anomaly detector. In our tests when an anomaly (e.g., a pillow) is detected, the robot
automatically stops moving and signals the anomaly using its LEDs while correctly removing the
controls from the human operators. In the experiments, the system detects different anomalies
and the robots always stop at a safe distance from the presumed hazards. This demonstrator
was built during the Covid restriction and thus is only limited to houses indoors and household
items as anomalies such as a bottle or a mug.

34 4.4 Demonstrators

0.1
0.2
0.3

sc
or

e

0 2 4 6 8 10 12 14 16
time [s]

ground truth

detection

Figure 4.5. Part of the qualitative testing dataset in the Factory scenario where the drone
first passes through the mist and then below a tape. Top: the manually added labels (green:
normal, red: anomalous) and seven frames sampled from the timeline. Center: the score
returned by the S8 model (solid black) and anomaly threshold t (dashed red). Bottom: the
anomaly detector output.

4.4.2 Drone in Factory Demonstrator

The second demonstrator is built in collaboration with our partner Hoovering Solutions which
provided the drone, the facility, and the control system used for the reaction to hazard detection.
For this demonstrator, we used the autoencoders discussed in this Chapter. With this demon-
strator, we want to test the whole inference (and control) pipeline based on our partner’s use
case. We developed a Python package deployed using a Docker container, that exposes APIs
that allow our partners to integrate the hazard detection model in the drone navigation system.
The library was used by Hovering Solutions to perform the demo for the midterm review at
M18 of the 1-SWARM EU Horizon project. In addition to the hazard detection models’ API, we
developed a GUI, visible in Figure 4.6. The GUI used provides feedback on what the model
detects and can be used for debugging purposes; it is composed of the following elements:

• Three top images, from left to right, the input frame, the autoencoder’s reconstruction,
and the error map (built using the color-coded difference between the autoencoder’s input
and prediction)

• A history bar that shows how the past frames were identified in red (anomalous), and
green (nominal); the most recent prediction lies on the right.

• A history plot of anomaly score (dots) per frame, filtered anomaly score (line), and
anomaly threshold (red line); the most recent prediction lies on the right.

three top
In case an anomaly is detected the framing around the input images becomes red like in

Figure 4.6. The demonstrator allowed a drone to fly unharmed across a testing environment
with hazards. In this demonstrator, we deployed the models directly onboard the drone us-
ing an NVIDIA Jetson board as the the Hovering Solution drones are already equipped with
such boards. NVIDIA Jetson is a family of single computer boards, particularly well suited for

35 4.4 Demonstrators

machine learning inference on embedded systems. We provide a setup guide for installing the
library on these boards with or without docker. We tested the performances of the system on
the NVIDIA Jetson board while running in tandem with Hovering Solution’s custom navigation
system; the autoencoder-based anomaly detector achieved a detection rate of 33FPS, reduced
to 27 FPS when exposing a web-based GUI. In the demonstration, the drone flies towards some
signaling tape stretched between a door and a pillar of the Factory scenario. As soon as the
hazard is detected, the drone stops its mission and backtracks to safety. Figure 4.6 illustrates
the detection of an unforeseen hazard during the demonstration.

Figure 4.6. Deployment in the Factory scenario: the drone advances normally until it
detects an anomaly (a tape crossing its path); a time series of anomaly scores in previous
frames is reported at the bottom (see supplementary video https://youtu.be/SylhxUl20C0).

36 4.5 Conclusions

4.5 Conclusions

In this Chapter, we explored an autoencoder-based visual anomaly detection technique for de-
tecting hazards in visual sensing data. The data is acquired by mobile robots freely exploring
an environment. The autoencoder is trained only on normal samples from our dataset and is
tested on a combination of normal and anomalous samples. Multiple anomalies with different
sizes and characteristics are considered during the model testing. In this Chapter, we focus on
how differently sized input affects the detection performance. Results show that the approach
is successful at detecting most anomalies (detection performance with an average AUC metric
of 0.82); nonetheless, detecting small anomalies is in general harder than detecting anoma-
lies that affect the whole image. Given these results we successfully deployed our model on a
ground robot and on a drone; then we tested its performance in real-time hazard detection in
two demonstrations. In all cases, anomalies were correctly identified indicating the detection
performance of our method.

In the next Chapter, we will modify this initial approach to be able to consider also anoma-
lous samples during training

Chapter 5

Hazard Detection with Outlier
Exposure

In the previous Chapter, we explored a visual anomaly detection technique based on autoen-
coders. We successfully trained and tested the model to detect hazards in visual sensing data
acquired by mobile robots exploring an environment; the autoencoder was trained only on nor-
mal samples from our dataset. However, in robotics applications, it is often the case that (po-
tentially very few) examples of anomalies are available. In this Chapter, we tackle the problem
of exploiting anomalous samples to improve the performance of a hazard detection system. Our
approach combines a Real-NVP model with an additional margin loss term, optimized jointly
with the Real-NVP loss. Quantitative experiments on our dataset show that exposure to even
a small number of anomaly frames significantly improves anomaly detection performance and
that the proposed approach significantly outperforms alternative approaches. On a disjoint test
set, our approach outperforms alternatives and shows that exposing even a small number of
anomalous frames yields significant performance improvements.

5.1 Background

Anomaly detection techniques assume that a large amount of non-anomalous data is available
(e.g., data from past patrolling missions); only these data are used to train a model. For a given
new observation (e.g., a frame acquired by the robot camera), the model outputs an anomaly
score, that quantifies how likely it is that the observation comes from a different distribution
than the learned distribution of normal data. In real-world robotics scenarios, this approach
is difficult to apply because normal data has a large variability and relevant anomalies might
affect the image data in subtle ways (e.g., a puddle of water on the floor only affects a small part
of the image). Absent a prior on the expected appearance of relevant anomalies, it is difficult
to learn anomaly detection models that perform well enough to be useful in practice.

However, in most realistic use-cases one can expect that at least some examples of anomalies
will be available when training the anomaly detection model, thus extending beyond the pure
anomaly detection paradigm. For example, samples of possible anomalies might be collected
during system design, and others after robot deployment and with partial human supervision.
These examples might not represent all possible types of anomalies, and might be available

37

38 5.1 Background

in much smaller quantities than normal data. Still, they represent useful pieces of information
that should be integrated into the model. To handle these additional training data, one baseline
solution is to use the resulting dataset, composed of many normal and few anomalous samples,
to train a binary classifier. This approach is suboptimal because the few available examples of
anomalies do not cover the space of all possible anomalies.

The main contribution of this work is methodological: we combine Real-NVP [24], a state-
of-the-art anomaly detection approach, with the concept of Outlier Exposure, which was recently
proposed in the deep learning literature [36] to train more robust anomaly detectors by pro-
viding large amounts of examples of outliers, sampled from completely different datasets than
the dataset of normal samples. In our context, we instead assume that the exposed anomalies
are few and correspond to relevant anomalies for the robot. This is implemented by using an
additional margin loss term during training of a Real-NVP model; this additional term enforces
that the exposed anomalies are assigned higher anomaly scores than random normal samples,
but does not imply any expectation that the exposed anomalies are representative of all anoma-
lies. We evaluate the method on a new real-world dataset, which we release as supplementary
material as a secondary contribution, acquired by a ground patrolling robot; experiments show
that exposing even just a few anomalous frames significantly improves performance, comparing
favorably with alternative approaches.

5.1.1 Models and Approaches

While already explained previously in this thesis, here we quickly recap the key components for
this work.

Reconstruction-based methods A standard deep learning approach to visual anomaly de-
tection uses undercomplete autoencoders [49, 18]. The typical architecture of autoencoders
consists of two modules, the encoder, and decoder, separated by a bottleneck. The encoder
and decoder are convolutional networks that, respectively, encode the input image into a low-
dimensional embedding and decode the high-level informative embedding into an image. The
bottleneck limits the embedding size thus inducing a reproduction error in the output. This
error can be exploited to detect anomalies when an autoencoder is trained only on normal im-
ages. Such a model, when tasked to reproduce an image that contains an anomaly, will fail to
correctly reconstruct it; the reconstruction error can therefore be used as an anomaly score for
the given input.

Normalizing Flows Normalizing Flow models are used both for generative purposes [2, 47,
37] and in the context of anomaly detection [97, 10]. These models rely on coupling layers,
invertible transformations that map the inputs to a chosen latent distribution, such as a normal
distribution. For anomaly detection, one uses the learned mapping to directly estimate the like-
lihood of a sample with respect to the distribution of non-anomalous samples used for training.
In this Chapter, we use Real-NVP [24], a type of Normalizing Flow model.

Outlier Exposure Our approach combines Real-NVP with the concept of Outlier Exposure [36]:
training anomaly detectors against an auxiliary dataset of known outliers. In the existing liter-
ature, these known outliers are sampled from large benchmark datasets (e.g., 80 Million Tiny
Images [91] or ImageNet-22K [23]), which contain a huge amount of data that is semantically

39 5.2 Method

(a) Anomaly detector: the
anomaly score is computed
from the estimated likelihood
of the encoding of image k.
The auto-encoder is trained
to reproduce k̃ ≈ k.

(b) Real-NVP learns the best
model m that maximizes sam-
ples’ likelihood by mapping
them to a target distribution
Z through a series of invert-
ible coupling layers.

(c) Outlier exposure: (above) the
original Real-NVP loss does not
consider anomalous samples; (be-
low) adding an outlier exposure
loss reduces the likelihood as-
signed to known anomalies.

Figure 5.1. The method to compute anomaly scores presented in Section 5.2. Gray
plots in (b) and (c) represent probability densities over the encoding space, where dataset

samples are drawn as small rectangles (normal in black, anomalous in red)

very different than in-distribution data; in this case, the approach helps the model to general-
ize and detect unseen anomalies. Anomaly detection tasks on real-robot datasets differ, since
much smaller datasets are available, and anomalies can be semantically very similar to normal
images.

5.2 Method

5.2.1 Problem Statement and Definitions

Our goal is to decide, at run-time, whether the current camera frame k is anomalous or not.
We do this by training machine-learning models on a dataset K of previously acquired images.
The dataset is composed of two disjoint subsets: Kn, with images labeled as normal, and Ka,
generally much smaller, with images labeled as anomalies.

The anomaly detector takes as input an image and outputs a real-valued anomaly score.
Following a common approach [97], the anomaly detector consists of two parts: dimensionality
reduction and density estimation (see Fig. 5.1a).

Dimensionality reduction We train an autoencoder f ◦ g to reconstruct images in Kn. Once
trained, we use the encoder to compute lower-dimensional representations x = g(k) ∈ Rd . In
particular, we obtain two datasets Xn = g(Kn) and Xa = g(Ka). Adding samples to Ka does not
require re-training the encoder; in fact, for this work, the encoder has been trained once and
then shared by the different anomaly detectors.

Density estimation A second machine-learning model h(·;θ) estimates the probability density
of the distribution Dn from which Xn has been sampled. Parameters θ are trained on both Xn

and Xa.

40 5.2 Method

Once both models have been trained, we define the anomaly score of an image k as the
negative log-likelihood of its encoding, assuming it belongs to Dn, i.e.:

− log h(g(k);θ) ∈ R . (5.1)

We devote the rest of the section to describe the density estimator h: a variant of Real-NVP
that additionally takes known anomalies into account.

5.2.2 Real-NVP

Normalizing flow models estimate the density of a distribution Dn from a set of samples. They
are based on learning the parameters θ of a bijection m(·;θ) : Rd → Rd that maps Dn to a
known target distribution Z. Following a change of variables, the probability density of the
original samples is recovered from the target probability density as:

p(x |θ) = pZ (m(x;θ))

�

�

�

�

det
�

∂m(x;θ)
∂ x

�

�

�

�

�

. (5.2)

For the rest of the Chapter, we fix the target to be a multi-variate normal distribution of zero
mean and unit variance Z =N (0,1).1

Normalizing flow models are trained to maximize the likelihood of the samples in Xn, or
equivalently to minimize their average negative-log-likelihood loss function:

LNF(x) = − log(p(x |θ)) (5.3)

= − log(pZ(m(x;θ)))− log

��

�

�

�

det
�

∂m(x;θ)
∂ x

�

�

�

�

�

�

.

While the first term is easily computed, and equals to d
2 log(2π) + 1

2 |m(x)|
2 for the chosen Z,

clever solutions are required to keep the second term tractable. We make use of one of them:
Real-NVP, a deep-learning normalizing flow model [24], where m consists of a sequence of affine
coupling layers designed to simplify the computation of the determinant of the derivative (see
Fig. 5.1b). Each coupling layer contains parametric translation and scaling on a subspace of
Rd , modeled as a dense neural network.

Once the model is trained, we can infer the negative-log-likelihood of a sample, which is
then used as an anomaly score:

− log h(x) = LNF(x) . (5.4)

5.2.3 Real-NVP With Outlier exposure

Density estimation through Real-NVP makes no use of known anomalous samples. To solve this
limitation, we combine it with outlier exposure.

The goal of outlier exposure is to improve the performance of an anomaly detection model
m by exposing it to samples Xa drawn from an outlier distribution Da, using an additional loss
LOE applied to pairs of samples (xn, xa) ∈ Xn ×Xa. In its generic form, the model should now
minimize a weighted sum of the original loss (in our case LNF) and of LOE:

〈LNF(xn)〉Xn
+λ〈LOE(xn, xa)〉Xn×Xa

, (5.5)

1This approach is known as Gaussianization [17] when Z is a normal distribution.

41 5.3 Experimental Setup

where 〈·〉X denotes the average over a set X .
Following [36], we define LOE as a margin ranking loss:

LOE(xn, xa) =max (0,γ+LNF(xn)−LNF(xa)) , (5.6)

where γ represents the margin hyperparameter; LOE is added to LNF loss as in Eq. (5.5). The
resulting loss, besides maximizing the likelihood of normal samples, further encourages the
model to assign a higher likelihood to normal samples than to known anomaly samples (see
Fig. 5.1c).

5.3 Experimental Setup

In the work of this Chapter we use v2 of our dataset as detailed in Section 3.6.3, it contains
two additional scenarios of drones flying in indoor environments, which are not used in this
Chapter. The dateset allow us to create all the sets needed for our experiments, namely Tt rain

composed of kn samples, Tval composed of kn samples, Tout composed of ka samples, and Ttest

composed of both kn and ka samples; note that the T sets are all disjoints.

5.3.1 Autoencoder: Reconstruction and Dimensionality Reduction

We train an undercomplete autoencoder to detect anomalies via the reconstruction method
(AE). The autoencoder implements a simple convolutional architecture often used for similar
purposes [31, 33]: it takes as input a 64× 64 RGB image; compresses it to a 128-dimensional
representation; then reconstructs it as a 64×64 RGB image as output. The model is trained on
normal samples of the training set by minimizing the mean squared error loss between input
and output. At inference time, the mean squared reconstruction error of a given frame is used
as an anomaly score.

The same autoencoder is also used for dimensionality reduction: the trained encoder g
extracts 128-dimensional visual features from input images, which are used by the approaches
described in Section 5.3.2 (see Fig. 5.1a).

Fig. 5.2 illustrates the model architecture: both the encoder and the decoder consist of four
convolutional layers interleaved by LeakyReLU activation functions; the last activation function
of the decoder is linear. The encoder convolution layers have stride 2 thus halving the input
size, while before each decoder convolutional layer the input size is doubled. The bottleneck
module is composed of two dense layers that take the output of the encoder and compress it to
a 128-dimensional vector.

The autoencoder is trained for 100 epochs using the Adam [45] optimizer, with a learning
rate of 0.001 and a reduction factor of 10 in case of a validation loss plateau. During training,
samples are randomly augmented with horizontal flipping, rotation (±10◦), cropping, contrast
and brightness variations, and mild additive Perlin noise [72]. The augmentation pipeline is
provided as supplementary material.

5.3.2 Density Estimation (RNVP, RNVP+OE)

We detect anomalies using Real-NVP density estimators; we separately report results without
outlier exposure (RNVP, Section 5.2.2) and with outlier exposure (RNVP+OE, Section 5.2.3).
Both models share the same architecture: they take a 128-dimensional image encoding as input

42 5.3 Experimental Setup

Figure 5.2. Autoencoder architecture. Encoder layers (left) use a stride of two. Inputs of
decoder layers (right) are up-scaled before convolutions. When not specified, layers use a
LeakyReLU activation function.

(see Fig. 5.1b), and output a 128-dimensional vector. The models are composed of four coupling
layers whose scaling and translation modules have a single hidden layer with 128 neurons, using
odds input masking.

The RNVP model is trained by minimizing the loss defined in Eq. 5.3; the RNVP+OE model is
trained by minimizing the loss defined by Eq. 5.5 and Eq. 5.6, where we set λ= 1 and γ= 100.
For each experimental run, both models are trained from scratch, with randomly initialized
weights, for 500 epochs using Adam [45] with a starting learning rate of 0.001. We reduce the
learning rate by a factor of 10 in case the validation loss plateaus for more than 10 epochs. For
all models, the checkpoint that minimizes the validation loss (which only accounts for normal
samples) is selected.

For inference, both models use the same anomaly score defined in Eq. (5.4).

5.3.3 Binary Classifier Baseline (BCLASS)

We compare RNVP and RNVP+OE with a neural network binary classifier (BCLASS) that op-
erates on the same 128-dimensional image embedding as input. The model c is composed of
three fully connected layers (with 256, 64, and 1 neurons respectively) interleaved by a ReLU
activation function; a Sigmoid activation function is used at the output.

The model is trained on Tt rain∪Tout using the Binary Cross Entropy loss to estimate whether
the input is an anomalous frame. The rest of the training details are shared with RNVP and
RNVP+OE. For inference, a given frame k is assigned an anomaly score c(g(k)) corresponding
to the output of the trained classifier.

5.3.4 Wide Residual Networks with Outlier Exposure (WRN+OE)

In addition to BCLASS, we also compare to Wide Residual Networks (WRN+OE) [99], leverag-
ing an architecture of size 16-2 and the implementation used by Hendricks et al. [36] for the
SVHN dataset [67], with the hyperparameters and augmentation used for training the WRN on
Tiny ImageNet [53]. To make the approaches comparable, in the training and validation sets we
included a new 3-class label representing the environment where the samples were recorded;
this label is used only during training and is ignored for testing. For inference, we use the Max-
imum Softmax Probability (MSP) [35] over the WRN’s output to detect anomalies [36]. The

43 5.4 Experimental Results

approach is thus trained to classify which of the three environments each sample was acquired
in; the uncertainty in the prediction is used as an anomaly score of the sample.

5.3.5 Metrics

We evaluate each model on the same testing set, which is composed of both normal and anoma-
lous samples. Also in this work we use the AUC to measure the predictive performance of the
anomaly detection models.

5.3.6 Computational Costs

Experiments are run on an NVIDIA 2080 Ti using Python 3.8 and PyTorch 1.7.1. On this plat-
form, training time amounts to 100 minutes for training AE, 20 minutes for training the RNVP
model, and BCLASS, 60 minutes for WRN+OE (over 20 epochs but converged after 4), and
on average 30 minutes for RNVP+OE. Inference time amounts to 1 ms for BCLASS, 2 ms for
WRN+OE, and 5 ms per frame for both RNVP and RNVP+OE.

5.4 Experimental Results

In this section, we report the results of an experimental investigation on the performance of
RNVP+OE on the dataset described in Section 3. As an initial step, we encoded all images in
the dataset using the autoencoder’s encoder, which yields a dataset of embeddings; this dataset
is used in all RNVP, BCLASS, and RNVP+OE experiments.

5.4.1 Hyperparameter Exploration

We explored various hyperparameters of autoencoder, RNVP, BCLASS, WRN, and RNVP+OE.
Most of the hyperparameters were set using a preliminary search or were inspired by previous
research [97, 24, 36]: the autoencoder’s bottleneck size, learning rate, maximum number of
epochs, input size and architecture details; the RNVP input size, learning rate, coupling layer
size and number, and input masking; WRN’s architecture and hyperparameters. For all exper-
iments except AE and WRN+OE, we let the model run for 500 epochs, then choose the best
performing model over the validation set. For WRN+OE we observed that after 4 epochs the
model converged, thus we let the model train for at most 20 epochs with early stopping.

Fig. 5.3 illustrates how we selected parameters λ and γ in Eq. (5.6) and Eq. (5.5), which are
specific to our proposed contribution. Fig. 5.3:left shows the impact of λ, for fixed γ = 0, on
10 experiments for each value: we select λ = 1 as the best parameter. Similarly, Fig. 5.3:right
shows the impact of γ for λ = 1 on 10 experiments for each value: we select γ = 100 as the
best parameter.

5.4.2 Comparison with Baselines

We compare the performance of RNVP+OE with the baselines AE, WRN+OE, RNVP and BCLASS.
RNVP+OE, WRN+OE and BCLASS are trained on the full training set, RNVP only on the normal
samples of the training set and AE on the normal frames; all are tested on the same testing set
(AE is tested on the corresponding frames). For RNVP, RNVP+OE, and BCLASS, we run the
experiment 10 times to reduce the noise originating from the stochastic training of the models.

44 5.4 Experimental Results

Figure 5.3. The impact of parameters λ and γ (x-axes) on the performance of the model
measured with the AUC (y-axis)

AE and WRN+OE are trained only once due to the greater computation requirements. For the
AE we report two AUCs based on two different anomaly scores, Mean Absolute Error (MAE)
and Mean Squared Error (MSE) over the reconstruction error.

Table 5.1. AUC values for our model and baselines (* indicates average over 10 runs)

no OE with OE

AE-MAE AE-MSE RNVP BCLASS WRN+OE RNVP+OE
0.64 0.67 0.73* 0.73* 0.55 0.80*

Results Table 5.1 reports the AUC of all baselines. WRN+OE (AUC=0.55) yields a low per-
formance on the task, which is probably caused by the fact that many considered anomaly types
do not hinder the prediction of the environment in which the sample is acquired. Despite not
using exposed outliers for training, AE yields a better performance both when using the recon-
struction MAE (AUC=0.64) and MSE (AUC=0.67) as anomaly scores. BCLASS (AUC=0.73)
and RNVP (AUC=0.73) show promising performance on the dataset. Finally, RNVP+OE has a
significantly better performance than all alternatives (AUC=0.80).

5.4.3 Effect on the RNVP Target Space

We investigate the effect of exposing RNVP to anomalies.

Results Fig. 5.4 shows how the additional loss defined in Eq. (5.6) increases the negative-log-
likelihood of anomalous testing samples, leading to a wider separation from normal samples
(Fig. 5.4a). Using outlier exposure on Real-NVP, anomalous samples are mapped further away
from the origin (i.e., the mean of the target multivariate normal distribution) by RNVP+OE
than by RNVP (Fig. 5.4b).

5.4.4 Impact of the Number of Exposed Anomaly Frames

Our contribution targets situations where limited anomaly samples are known. Therefore, we
measure how much the number of anomaly samples available at training impacts the perfor-
mance of RNVP+OE and BCLASS on the testing set, starting from just a few samples. We test

45 5.4 Experimental Results

(a) The loss function LNF, i.e., the negative-log-likelihood, evaluated over
the testing set. Larger values mean less likely.

(b) The Euclidean norm of transformed samples m(x) evaluated over the
testing set.

Figure 5.4. The effect on loss function and L2 norm of exposing the model to anomalies
during training.

exposed outlier set sizes ranging from 2 to 16384 samples; for each size, we train both models
10 times: for each run, we randomly sample a subset of the corresponding size from the ex-
posed outliers in the training set. Note that RNVP+OE trained on 0 anomalies is equivalent to
RNVP.

Results Fig. 5.5 illustrates that, as expected, AUC increases when training with more exposed
anomaly frames. While both models exhibit an increase in performance by seeing more anoma-
lies during training, RNVP+OE always outperforms BCLASS. For RNVP+OE, we observe that the
performance tends to saturate after 1024 outlier frames are exposed. Interestingly, even when
RNVP+OE is exposed to just a few anomalies (AUC=0.75 for N = 64), there is a noticeable
increase in performance,while BCLASS performs significantly worse than RNVP for N ≤ 64.

5.4.5 Impact of the Number of Exposed Anomaly Types

As described in Section 3, the dataset set is composed of different types of anomalies. We want
to explore the impact of the heterogeneity of the training set by varying the number of types of
anomalies available for training an RNVP+OE model. Using the complete training and testing
sets, for N = 1,2, 3,4, 6,12 types of anomalies, we run the following experiment 30 times: (1)
we randomly pick a subset of N anomaly types; (2) we train RNVP+OE exposing it only to the
selected anomaly types; (3) we compute the AUC over the whole testing set and also over the
testing set limited to or excluding the anomaly types used for training.

Results Fig. 5.6 illustrates how the AUC varies over the different subsets of the testing set
(with all anomaly types, only with the anomaly types exposed in training, only with anomaly
types not exposed in training). We observe that exposing additional anomaly types does not

46 5.4 Experimental Results

Figure 5.5. Impact of the number of exposed anomaly frames (x-axis, log scale) on the AUC
value (y-axis) for the RNVP+OE model (blue) and the binary classifier baseline (orange);
line and shaded area correspond to the mean and 95% c.i. over 10 runs of each model.

Figure 5.6. Performance (y-axis) for RNVP+OE models (colored lines), when trained with
an increasing number of anomaly types exposed (x-axis). Performance is reported for:
all anomaly types (blue); only the exposed anomaly types (orange); only the not-exposed
anomaly types (green). Points correspond to the mean over 10 runs of each model; the
shaded blue area represents the 95% c.i..

hinder the detection of non-exposed anomaly types (green line): we notice a small improvement
when more than 6 types are exposed. The most significant improvement is on already seen
types of anomalies (orange line), where the performance does not change significantly when the
exposed anomalies are more heterogeneous (i.e., more types are exposed). As expected, similar
to the previous experiment, the more anomalies are exposed, the better the model performs on
the whole testing set (blue line).

47 5.5 Conclusion

5.5 Conclusion

In this Chapter, we considered the problem of improving visual anomaly detection systems for
mobile robots, in situations where a limited amount of examples of some anomalies is available.
Our approach combines a Real-NVP model with an additional outlier exposure loss. Quantita-
tive experiments over 16 different anomaly types show that our approach is effective even
with few anomaly samples, improving significantly the detection performance. Our proposed
method paves the way for further research aimed at the safe autonomous operation of mobile
robots in unstructured, unpredictable environments. In this Chapter, we assumed that we had
already a selection of labeled anomalous samples to be used for training our model; in reality,
the data collected from a robot deployed in a real application would be massive and not pre-
cisely labeled. In the next Chapter, we tackle this problem by proposing two new active learning
queries.

48 5.5 Conclusion

Chapter 6

Active Learning Approaches for
Anomaly Detection

As explained in the Introduction, during the continued use of a robot with a hazard detection
system, we would collect thousands of samples containing mostly normal samples and some
anomalies. If we want to exploit those anomalous samples using the approaches introduced in
the previous Chapter, we would need to have a human expert to check and label all samples; this
approach is inefficient. In this Chapter, we propose to use active learning to select informative
samples to be labeled by an expert and further improve the detection system performance. We
benchmark 8 different active learning strategies, of which two are novel; our results show that
our approach has the best performance overall, but choosing the right query strategy strongly
depends on external factors.

6.1 Background

Industrial use of autonomous robots for inspection or patrolling is increasing; more robots are
now facing unexpected unknown events in new environments. At the same time, robust sen-
sors and deep learning models allow a better understanding of a robot’s surroundings. In this
context, Anomaly Detection has seen a new breath of research [97, 10, 60] focused on robotics
applications, becoming an important feature of a vision system for robots. One overlooked
question regards the improvement of such models deployed on robots using data collected over
time.

In other fields a tried approach is to use active learning to efficiently use data collected for
model performance improvements [84, 86]; to the best of our knowledge, active learning has
never been applied to a robot’s Visual Anomaly detection system.

We focus on a specific scenario, an autonomous robot that explores underground tunnels
where communication with the outside world is not available. While we expect the tunnels to
be traversable, unexpected events can happen at any time; these events can become hazardous,
impairing the robot or destroying it altogether. We emulate this scenario using our dataset, see
Chapter 3. Similarly to recent research [97, 19], the robot uses a visual anomaly detection
deep learning model to detect anomalies in frames coming from the front-facing camera. In the
scenario, we expect the training data to be limited to a set of nominal frames of the first safely

49

50 6.2 Method

traversable meters of a tunnel.
To circumvent the limited availability of training samples, we propose to apply active learn-

ing to the data collected during the mission and carefully ask an expert to label only the most
informative frames; then add these labeled samples, retrain the detector, and measure its per-
formance using AUC and Average Precision on the testing set.

Our contribution is a benchmark of 8 active learning approaches to see which is the most
efficient, from a sample labeling point of view, at improving the AUC and Average Precision. Our
second contribution is two new query strategy approaches that exploit our model’s prediction.

6.1.1 Active Learning

Active learning is an iterative process that aims at finding efficient ways to improve model per-
formance by adding selected samples from an unlabeled set U to the training set T . In active
learning approaches the model selects the K unlabeled samples to be labeled by an expert/o-
racle. For us, U is the data collected during missions. Settles [84] identify three settings that
define the general query strategies one can use.

Membership Query Synthesis - Introduced by Angluin et al[3], in this setting the model
asks generation of new samples that are not part of T ; the samples are then labeled by an oracle,
but it could happen that the generated samples were unintelligible for a human expert [5]. New
samples are generated by Generative Adversarial Networks GANs [32, 11].

Stream-Based Selective Sampling - Here it is assumed that continuous inexpensive or free
streams of data are available [21]. After collection, the learner decides for the annotation or not.
Labeling is made in isolation for each sample; thus we cannot exploit contextual information
for choosing which samples to annotate.

Pool-Based Sampling - In this scenario the samples are selected from a large pool of unla-
beled data U [55]. Using an acquisition function the learner makes a greedy selection of samples
to be labeled by the oracle; the learner can exploit the sample surroundings and neighborhood
to make a decision. Pool-based sampling requires evaluation of each sample of U ; this pro-
cess can become expensive, however, it has become the most studied approach for real-world
scenarios [84, 11, 93, 89, 52].

6.1.2 Active Anomaly Detection

While there is a plethora of research on active learning [84, 11] and even recent efforts on active
learning for anomaly detection on small-scale tabular data [100, 93, 89, 92], no research exists
at the intersection of visual deep anomaly detection and active learning in a robotic context.

6.2 Method

We aim to compare, under a set of realistic assumptions, 8 different approaches of active learn-
ing to improve the performance of an anomaly detection system of a robot. We compare ap-
proaches with an automated pipeline that trains a custom Real-NVP model on the image’s fea-
ture embeddings. The embeddings are part of our dataset, see Chapter 3 for studying visual
anomaly detection in the robotic context; the embeddings are extracted from images by a pre-
trained CLIP [73]model. To trace the performance of the detector we use AUC and AP over the
test set of the dataset.

51 6.2 Method

6.2.1 Anomaly Detection

The embedding we use are 512-sized vectors; these are passed in input to our custom Real-NVP.
The model learns to map the vectors to latent multivariate Normal distribution with the same
dimensions. There we measure the probability of a sample being normal or anomalous. The
model setup is similar to [60] but adapted to the larger embedding size; both the input and
hidden layers have 512 neurons. For the outlier exposure loss(LOE) component we use the
original paper values of λ= 1 and γ= 100.

6.2.2 Active Learning

Assumptions

We follow [93] and set the following assumptions for our benchmark.
General Assumptions - We focus on label feedback with a fixed budget of 64 samples to be

interpreted by our perfect oracle.
Specific Assumptions - For class distribution we assume that anomalies are unusual ob-

servations with no underlying distribution. Our learning objective is to improve the AUC and
Average Precision of our model on a test set. Our initial pool is an unlabeled pool of assumed
nominal samples.

Query strategies Overview

Trittenbach et al. [93] in their overview, propose a categorization of query strategies based
on the informativness sources: data-based use statistical approaches on the samples, model-
based rely on functions based on the learned model and, hybrid strategies that combine the two
above; we propose an extension to the data-based category to consider strategies that extract
information from the data itself (i.e. using spatial or geometrical [6] information).

We implement 8 different strategies: three are model-based (DB, HC, IHC), two are data-
based (MM CLIP, MM RNVP), two are hybrids (HMM, HMM RNVP) and one is a baseline (RAN).

Decision Boundary - We base our implementation of Decision Boundary(DB) on the marginal
strategy defined by Zhang et al. [100]; they use Neural Autoregressive Flow (NAF) [39] to de-
tect anomalies and to select new samples. In the paper, the samples chosen are those that
are closer to a decision boundary set as the α-quantile (α ∈ [0.9,0.95]) of the log-likelihood
distribution of samples generated with NAF. We avoid that and set the decision boundary as
b = icdf(α) where α is set to 0.95, thus b = 1.96, and icdf is the inverse cumulative density
function. To select samples u∗DB to be labeled we use:

u∗DB = argmin
uN∈UN

|(||uN ||2 − b)| (6.1)

where uN corresponds to the Real-NVP latent representation of an unlabeled sample.
High-Confidence - Another model-based strategy is High-Confidence [4](HC); HC selects

the most anomalous samples of U as follows:

u∗HC = arg max
u∈U

L(u) (6.2)

where L is the negative log-likelihood of the samples u of U .
We also implemented Inverse High-Confidence (IHC) that consists in selecting the least anoma-

lous samples from U . Note that both HC and IHC in unsupervised anomaly detection are special

52 6.3 Experimental Setup

cases of DB; HC is DB where the boundary is set at an infinite distance from the nominal distri-
bution and IHC corresponds to DB with a boundary at the center of the distribution.

Minimax - Under the data-based category we implement two strategies that explore the
data space; inspired by Sener [83], Minimax (MM) select those samples from U that have the
largest minimum distance from any sample t of T .

We apply MM both on the CLIP space (MM CLIP) and on the RNVP latent space (MM RNVP).

u∗M M = argmax
u∈U

dist(u, t), ∀t ∈ T (6.3)

where dist is the L2 distance in the chosen data-space.
Hybrid Minimax - We propose a novel active learning Pool-based hybrid query strategy

called Hybrid Minimax.
Inspired by MedAL [86], it combines MM and HC. Differently than MedAL, we first select a

set of K ×m samples using MM, from these HC selects the K most anomalous samples. m is a
hyperparameter and is set to 3; if set to 1 Hybrid Minimax would match MM on the same data
space, on the opposite a large enough m would result in a Hybrid Minimax behaving like HC.

We propose two versions of Hybrid Minimax, depending on the data space of the first K×m
samples selection; if selected in the CLIP-space we call it HMM, if the selection is made in the
Real-NVP latent space then it is called HMM RNVP.

Our approach combines the coverage of distance-based selection with the informativeness
of the model prediction, resulting in a different selection than the two parts alone.

Random - We also consider a naive baseline where K random samples are selected from the
unlabeled set.

6.3 Experimental Setup

The dataset we use is our Hazards&Robots v3 described in Chapter 3. The dataset is split in
disjoint sets Tt rain composed of kn samples and acting as the T set of the active learning setting,
U composed of kn and ka samples, Tval composed of kn samples, and Ttest composed of both kn

and ka samples.

6.3.1 Implementation

We release the code to replicate our results1. We implemented everything using Python 3.8 and
PyTorch 1.13 and we ran our experiment on an NVIDIA 2080 Ti.

Models Training - We run parallel training2 of models on a single GPU; each model is
trained for 100 epochs in 2 minutes. More than 6500 experiments are run amounting to 17
days of computation time.

Query Strategy Computation - For model-based query strategies, the computation is done
on GPU, and predictions for the entirety of U take less than 1 second. For data-based query
strategies, distance computation between data samples is done with Faiss [41] from FAIR. The
library can compute distances on GPU using large tensors already in VRAM; the result is an
almost instantaneous distance computation.

1code is available on GitHub https://github.com/idsia-robotics/ActiveAnomalyDetection
2using GNU Parallel [90]

53 6.4 Experiment Results

6.3.2 Metrics and Tracking

Evaluation of each model detection performance is done over the dataset test set with the fol-
lowing metrics. As in the previous Chapters, also here we use the AUC as our metric. Follow-
ing [89], in this work we also consider the Average Precision (AP) of a model; AP describes
the precision-recall curve as the weighted average of precisions at consecutive thresholds using
recalls of preceding thresholds as weights.

We trace both progress curves [93] of AUC and AP and their averages along 10 active learning
cycles.

6.3.3 Experiment Run

An experiment is defined by a query strategy, an initial size of T , and a U with a fixed per-
centage of anomalous samples. An experiment corresponds to 10 active learning cycles of a
query strategy; the samples of T , U , and the u∗ are traced. In a learning cycle we train and
test the Real-NVP on T and the u∗ samples selected before; then using the query strategy we
select the next u∗ from U . We use four initial sizes for T (64, 512, 1024, 4096) and four per-
centage of anomalies in U (0%, 0.1%, 1%, 10%). We fix the number of samples chosen by the
query strategies (K) to 64. These values are chosen to resemble realistic scenarios and other
datasets [89].

Each experiment setup is run 5 times and each time the initial training sample, the anoma-
lous one available in the unlabeled is randomly chosen and fixed for the rest of the run.

6.4 Experiment Results

6.4.1 Overall Performance

In Tables 6.2, 6.3 we collect the query strategies metrics averaged across learning cycles and
experiment repetitions. We highlight the best performance of each query strategy in italics; we
color grade the values across all experiments where the better the performance the darker the
color, note that the grading is also local to each subset of runs relative to a certain percentage of
anomalies. In Table 6.1 we report the average performance of a Real-NVP model trained only
on the initial T . While not reported in a Table, on average a model that sees the whole T and
U sets achieve AUC 0.960 and AP 0.982.

In terms of AUC and AP, the most performing query strategy is HMM (AUC 0.951, AP 0.978).

6.4.2 Initial Training Size and Unlabeled Anomaly Presence

When data is scarce, i.e few samples are available initially or anomalies are scarce in U , it is
better to explore the unlabeled set than to exploit what is learned; explorative strategies such as
MM CLIP, MM RNVP, and HC lead to higher metrics than exploitative ones like DB and HMMs;
note that if the initial size is very limited (64) the best strategy is RAN. Conversely, large initial
T or high percentage of anomalies in U , lead to better performances from hybrid queries(HMM,
HMM RNVP). Since DB and IHC do not improve the performance of the model over the initial
model (Table 6.1 we will exclude these two query strategies for the rest of the experiment
analysis. We assume that the decision boundary of DB is set regardless of the learned model,

54 6.4 Experiment Results

Table 6.1. AUC and AP of the initial models trained only on the initial training size.

Initial Size 64 512 1024 4096

AUC 0.9126 0.9342 0.9390 0.9434
AP 0.9583 0.9693 0.9719 0.9741

Table 6.2. Detailed analysis of average AUC performance

Initial Size 64 512 1024 4096
% of Anom in U 0.0 0.01 1.0 10 0.0 0.01 1.0 10 0.0 0.01 1.0 10 0.0 0.01 1.0 10

DB 0.912 0.914 0.913 0.914 0.934 0.934 0.933 0.934 0.938 0.938 0.939 0.939 0.943 0.943 0.943 0.943
HC 0.935 0.936 0.925 0.913 0.943 0.943 0.938 0.935 0.944 0.944 0.942 0.939 0.946 0.946 0.945 0.943
IHC 0.911 0.914 0.913 0.914 0.934 0.934 0.933 0.934 0.938 0.938 0.939 0.939 0.943 0.943 0.943 0.943
MM CLIP 0.936 0.936 0.927 0.913 0.943 0.943 0.938 0.935 0.945 0.944 0.942 0.939 0.946 0.947 0.945 0.943
MM RNVP 0.935 0.936 0.925 0.913 0.943 0.944 0.937 0.935 0.944 0.945 0.942 0.939 0.946 0.946 0.944 0.943
HMM 0.911 0.915 0.926 0.924 0.933 0.935 0.945 0.947 0.938 0.938 0.948 0.949 0.943 0.943 0.950 0.951
HMM RNVP 0.910 0.914 0.925 0.922 0.933 0.934 0.943 0.946 0.938 0.937 0.946 0.949 0.943 0.943 0.947 0.950
RAN 0.936 0.936 0.937 0.940 0.942 0.942 0.942 0.945 0.944 0.943 0.945 0.946 0.946 0.946 0.946 0.947

Table 6.3. Detailed analysis of average AP performance

Initial Size 64 512 1024 4096
% of Anom in U 0.0 0.01 1.0 10 0.0 0.01 1.0 10 0.0 0.01 1.0 10 0.0 0.01 1.0 10

DB 0.958 0.959 0.958 0.959 0.969 0.970 0.969 0.970 0.971 0.971 0.972 0.972 0.974 0.974 0.974 0.974
HC 0.971 0.971 0.965 0.959 0.974 0.975 0.972 0.970 0.975 0.975 0.974 0.972 0.976 0.976 0.975 0.974
IHC 0.958 0.960 0.958 0.959 0.969 0.970 0.969 0.970 0.972 0.971 0.972 0.972 0.974 0.974 0.974 0.974
MM CLIP 0.971 0.971 0.966 0.959 0.974 0.975 0.972 0.970 0.975 0.975 0.974 0.972 0.976 0.976 0.975 0.974
MM RNVP 0.971 0.971 0.966 0.959 0.974 0.975 0.971 0.970 0.975 0.975 0.974 0.972 0.976 0.976 0.975 0.974
HMM 0.958 0.960 0.966 0.964 0.969 0.970 0.975 0.975 0.971 0.971 0.977 0.977 0.974 0.974 0.978 0.978
HMM RNVP 0.958 0.960 0.966 0.963 0.969 0.970 0.974 0.975 0.971 0.971 0.976 0.976 0.974 0.974 0.976 0.977
RAN 0.970 0.970 0.971 0.973 0.973 0.973 0.973 0.975 0.974 0.974 0.975 0.975 0.975 0.975 0.975 0.976

thus not providing a meaningful selection of samples; instead, IHC by sampling only the least
anomalous data does not provide useful information to the model.

6.4.3 Anomaly Selection

Figure 6.1. Progress curves of query strategies with 4096 initial samples.

In Figure 6.1 we plot the progress curves of HMMs, MMs, HC, and RAN. In Figure 6.2 we
see the percentage of anomalies selected by each query strategy along the learning cycles. In
Figure 6.3 instead, we see the number (variety) of anomaly classes in selection. For these
Figures we focus only on the 4096 initial size. From the Figures, we observe that the learning
model benefits from selecting anomalies; in all percentages of Figure 6.2, the model with a

55 6.4 Experiment Results

Figure 6.2. Progress curves comparing the total percentage of anomalies in the unlabeled
set with 4096 initial samples.

Figure 6.3. Progress curves comparing the variety of anomalies in the unlabeled set with
4096 initial samples.

larger anomalies selection produced the better models (see Figure 6.1). When the selection
size is matched (see the central plot of Figure 6.2 and 6.3 and 6.1) the variety of anomalies is
dominant; in the plot, the variety is expressed as number of unique anomaly classes selected).

It is safe to say that the resulting performance differences between query strategies, in the
context of anomaly detection, do not only depend on the source of informativeness - as classic
strategy classification implies - but also on the way a certain strategy selects anomalies, both
in number and variety. We think that this later observation is novel to the active learning field
and should be explored more in future research.

6.4.4 Drone in Train Tunnel Demonstrator

At M36 of the 1-SWARM project, we performed an offline demonstration of the detector lifecycle
using both outlier exposure and active learning techniques to exploit the data collected by
Hovering Solutions in a real outdoor tunnel. After the detector training only on samples without
hazards, we run an offline cycle as follows:

1. Perform a mission, running the anomaly detector and collecting new samples and anomaly
scores.

56 6.5 Conclusion

2. Use our active learning module (HMM RNVP) to select some samples to show to an expert
operator and ask for them if they represent hazards.

3. Retrain the anomaly detector.

4. Back to step 1 for a new mission, comparing the classification performance with respect
to the previous version during the new mission.

By adding a small amount of manually labeled data (750 frames), the AUC improved from 0.68
to 0.76. At M40, we performed the final demonstration in the target environment. We selected
a variant of Real-NVP described in this Chapter that has proven the best for the task, which we
deployed as a Python library onboard Hovering Solutions drones, similarly to what we achieved
in the demonstrator of Sectio 4.4.2. Hovering Solutions integrated the detector into the control
stack so that the drone retracts to the take-off position when the detector perceives an anomaly.
The detector runs onboard of the drones at 1 fps due to camera limitation, but the detector could
potentially run at 20 fps as one inference requires about 50 ms. Hovering Solution performed 4
runs, flying the drone for a total of about 200 meters in an outdoor tunnel. Note that they could
perform fewer runs than planned due to strong wind. Like in the previous demonstration, the
drone detected all hazards.

6.5 Conclusion

In this Chapter, we benchmarked 8 different active learning strategies for the task of visual
anomaly detection in a robotic scenario. Two strategies are novel and are proposed as an alter-
native to the other ones. In our benchmark, we compare how the selected strategies improve
the AUC and AP when tested on a large-scale dataset for anomaly detection. Our experiments
show that at the beginning of a deployment cycle of an anomaly detection model, it is better
to explore the data space, for example with a distance-based query strategy. Later when more
data is collected and anomalies are found, it is better to move to a hybrid model like the one we
propose, to improve the detection performance. We introduced a new setup for our detector,
we used CLIP as a feature extractor for the RGB images in conjunction with Real-NVP for the de-
tection over the feature embeddings; we acknowledge that this setup might not work for other
robots’ sensory configurations, thus, a limitation of this study is the input constraint that CLIP
imposes. Nonetheless, with the work described, we can finally close the training-deployment-
improvement cycle.

In the next Chapter, we will move our focus to the core vision technology and study what
alternatives we have for detecting anomalies in 3D point clouds.

Chapter 7

Applications to 3D Point Clouds

In previous Chapters, we focused our research on 2D visual data as images and videos to detect
hazards for robots. In this Chapter, motivated by the reduced costs and wider availability of
high-resolution depth cameras and LIDaR sensors, we explore the use of 3D visual data, such
as point clouds, as an alternative to 2D visual data for robotic environmental perception. We
explore 3D anomaly detection using deep learning methods designed for point cloud data. We
achieved this thanks to a recently released 3D dataset for Anomaly Detection of industrial prod-
ucts [7]. Using the MVTec-3D dataset, we contribute a comparison between a 3D point cloud
features extractor, a 2D image features extractor, a combination of the two, and three baselines.
We also compare our work with other models on the dataset’s DETECTION-AUROC benchmark.

7.1 Background

Off-the-shelf pre-trained image feature extractors are increasingly being used in academic and
industrial research for building deep-learning models to solve computer vision tasks. Recently,
Vision Transformer [26](ViT) paved a new road for researchers to build even more complex and
performing models for computer-vision tasks. A notable example of ViT-based models is CLIP
from OpenAI [73] a very large and complex computer vision model trained on an enormous
corpus of captioned images to solve any kind of vision task. Due to their size and reliance on
large and complex datasets, models such as CLIP can be only developed and trained by a limited
set of companies and research labs. However, most of these large models share an open-source
nature with pre-trained models available online 1. By removing the need to train an ad-hoc
feature extractor, researchers can focus on solving the task at hand using the extracted feature
embeddings; regularly smaller than images that contain low-level semantic information, the
embeddings encode visual data into high-level semantic features allowing researchers to train
computer vision models with fewer samples or smaller models (excluding the extractor).

Similarly, we see wider use, in both academia and industry, of 3D data through depth cam-
eras, LIDARs, photogrammetry representation, or Neural Radiance fields for solving computer
vision tasks. Nonetheless, one 3D task that is still understudied [30] is Anomaly Detection on
3D Data. The task of 3D Anomaly Detection has potential applications in many fields such as
health care, industrial product inspection, industrial asset maintenance, site surveillance, and

1https://github.com/openai/CLIP

57

58 7.2 Related Work

robotics; currently, all of these fields only rely on 2D Anomaly Detection.
A few recent works [38, 74, 96, 20, 64, 29] approached the task of Anomaly Detection on

3D data, with most [38, 74, 96, 20] focusing on Segmentation of Anomalies.
In this work, we ask ourselves if, with the current state of the art in deep learning models

for 3D Point Clouds, it is possible to solve the task of anomaly detection on 3D point clouds
without training an ad-hoc features extractor, similarly to what we achieve in our previous
work from chapter 6. The use of pre-trained 3D feature extractors would remove the need for
a difficult-to-develop and train 3d features extractor, lowering the entrance barrier to 3D visual
data analysis.

7.2 Related Work

7.2.1 Dataset

For this work, we use the MVTec-3D dataset [7]. To the best of our knowledge, this is the only
existing open-access dataset for the task of 3D Anomaly Detection, and more specifically, 3D
Anomaly Segmentation.

The MVTec-3D dataset is built for studying the task of 3D anomaly segmentation in the con-
text of industrial mass production; the dataset is composed of more than 4000 high-resolution
point clouds and RGB images of 10 different objects with 10 different anomalies, captured us-
ing an industrial 3D sensor. The dataset is already subdivided into training, validation, and
testing sets; all sets contain normal samples, classified into different object categories, but only
the testing set contains anomalous samples.

For each anomalous test sample, a precisely annotated ground truth is provided; in Fig-
ure 7.1 a selection of the dataset is shown.

7.2.2 Models and Approaches

Image Anomaly Detection

In the previous Chapters, we discussed at length how anomaly detection can be achieved using
images coming from robot cameras.

3D Anomaly Detection

While Image Anomaly Detection has been studied in different settings, 3D Anomaly Detection,
due to the limitation to only MVTec 3D as the only representative dataset, is focused only on
the topic of anomaly detection of industrial products.

One of the earlier studies on 3D anomaly detection, after the release of MVTec-3D, is from
Horwitz et al [38]. In their work, the authors study the task of 3D anomaly detection and
segmentation (3DAD&S) and compare some non-purposely made models with their proposed
approach on the MVTec dataset. Their objective is to better understand if, for this task, the
3D data is useful or not; from their results, it’s clear that while 2D approaches still beat the
3D purposely built ones, at least for the latter the 3D data is essential. Then they provide an
analysis of the key properties for successful 3DAD&S representation, leading to their proposed
approach called BTF; while their model achieves very good segmentation performances, the

59 7.2 Related Work

Figure 7.1. Examples of samples from the Mvtec3D dataset

authors recognize the model limitation on the image level accuracy, the same task we set to
analyze in this work.

Rudolph et al. [74] propose an Asymmetric Student Teacher network to solve the Anomaly
segmentation task on both the MVTec-3D and the original image-only MVTec dataset [8]. Dif-
ferent from other student-teacher networks, their approach uses normalizing flow models for
the teacher and conventional feed-forward convolution blocks for the students creating a dis-
crepancy in the student prediction outside of the normal data on which the student network is
trained on.

In their paper, Wang et al [96] use the MVTec-3D dataset to propose a multimodal approach
to 3D anomaly detection called Multi-3D-Memory (M3DM). With M3DM the authors combine
features extracted from both 3D point clouds and images; first, patches of point clouds are
produced using the farthest point sampling, then the points in each patch are encoded using
Point Transformer [103] and the resulting features are remapped onto a 2D plane with the
same size of the RGB picture and are then averaged into patch-wise features; at the same time
patch features are extracted from the RGB image. Given the sets of patch features for both
RGB and point cloud, the authors propose two new learnable modules called Unsupervised
Feature Fusion and Decision Layer Fusion that are used, respectively, to learn the interaction
between multimodal features and to deal with possible information loss that happens during

60 7.3 Experimental Setup

the information fusion; the latter module uses multimodal memory banks during inference to
produce the final anomaly and segmentation predictions.

Chu et al. [20], differently from others, propose a shape-guided approach for integrating
the information from both RGB and point clouds. Their approach uses neural implicit functions
to represent local areas of the point clouds. Similarly to others, they first split the point cloud
in 3D patches, then these patches are passed to a PointNet network, and the resulting features
are used by the Neural Implicit Function module, to extract components that are used to define
signed distance functions that implicitly encode normal local representations; these are then
combined with ResNet extracted RGB features and used to define segmentation maps of the
anomalies.

3D Feature Extractor

Image Based A logical approach to 3D feature extraction is to use approaches well-tested on
2D data and adapt them to the additional dimension. In their paper [102], the authors propose
to bridge the gap between a pre-trained CLIP [73] vision transformer and the point clouds from
ModelNet [98] and ScanObjectNN [95] using point-projection images of different views of a
single object. For each object, several views are generated and the resulting set of images is
used to extract features. In their work, the authors note that using a zero-shot approach leads
to poor performances, but with an additional trainable component after a few-shot training,
the performance on the classification task increases.

Dong et al. [25] use pre-trained image vision transformers as part of the teacher encoder
to, then, train a point cloud-only student encoder module. Their approach, called ACT, uses
only x,y,z information and achieves the best performance on both point cloud classification and
semantic segmentation.

Point Cloud Based In contrast to the aforementioned approaches, Zhang et al. [101] propose
a point cloud-only approach that does not use images or image pre-trained models as part of
the pipeline. With Point-M2AE, the authors define and train a multi-scale masked autoencoder
with the objective of using it as a zero-shot point cloud encoder. The model is composed of an
encoder and decoder with skip connections; the encoder is fed with differently scaled masked
point clouds from the same sample. As for images, the masked autoencoder is trained using a
proxy reconstruction task. In the original paper, the approach achieves promising results across
different tasks; finally, the authors provide both code and pre-trained models.

In this work, we set to use a pre-trained version of the encoder, used in combination with
an SVM to solve a Linear classification task. The major drawback for Point-M2AE is the limited
input size; the point clouds used for training the encoder are limited to 1024 points while the
MVTec-3D point clouds contain hundreds of thousands of points per sample. For this reason,
part of the code provided by Zhang et al. has been adapted and a point sampler is introduced
to reduce the MVTec point cloud to the correct size.

7.3 Experimental Setup

While the MVTec 3D dataset is built for 3D anomaly segmentation, in this work we will limit
ourselves to the binary classification task of anomaly detection; for each point cloud our model
will predict if it contains an anomaly or not. One of the metrics that is used in the dataset

61 7.3 Experimental Setup

benchmark is the DETECTION-AUROC (in some cases called Image-AUROC); this metric indi-
cates the AUC for detecting anomalies in the samples, without considering the segmentation.
We will compare our results to those of the DETECTION-AUROC benchmark, available on the
dataset page of papers with code 2.

In this work we use a two-part model, a feature extractor and an anomaly detection head;
the latter receives as input the feature embedding from the extractor and produces an anomaly
score for each embedding. The detection head is a Real-NVP model and - excluding adaptation
to different embedding sizes - it is not changed throughout the experiments; thus the only
changing part will be the feature extractor.

Real-NVP

This model has been already used in a recent paper [97], and by us in Chapters 5 and 6, as an
anomaly detector based on latent embeddings. For this work we explore the Real-NVP hyper-
parameters using an empirical process, ultimately landing on a similar setup to those used in
the previous Chapters 5 and 6. The only differences between these experiments and previous
works are the internal size of the layers and input size; these are input-dependent. Note that
during training or hyper-parameter search, the Real-NVP always converged with the mapping,
excluding its influence on the experiment results. All Real-NVPs are trained for 100 epochs with
early stopping.

Baselines

We define two baselines, Random and Ones. The first substitutes the features extractor com-
ponent with a random signal sampled from a Normal distribution; the latter produces a 1s
feature vector as input for the Real-NVP. We use two different baselines to demonstrate that the
Real-NVP component is not relevant to our experiment.

Handcrafted Baseline

We also define a set of handcrafted feature extractors to serve as an additional baseline. These
basic features are heuristics chosen to be easy to compute and informative enough to detect
macroscopic anomalies (e.g. a large piece of an object missing). The 11 features are the fol-
lowing:

• ft1: number of points in the point cloud

• ft2 to ft5: number of points in 4 quadrants (i.e. split the point cloud into 4 quadrants
from a top view)

• ft6 and ft7: maximum and minimum z value for any point cloud’s points

• ft8 and ft9: maximum and minimum x value for any point cloud’s points

• ft10 and ft11: maximum and minimum y value for any point cloud’s points

2https://paperswithcode.com/sota/rgb-3d-anomaly-detection-and-segmentation-on

62 7.4 Experimental Results

XYZ Model

The first, non-baseline, approach proposed uses Point-M2AE as a feature extractor. This XYZ
(i.e. point cloud data) encoder, uses positional information from the entire point cloud to
produce a feature vector. The Point-M2AE encoder takes as input a 1024pts point cloud and
produces 384 features; these are passed to the Real-NVP that maps them to a latent space where
the "normality" probability can be extracted.

RGB model

Since the MVTec-3D dataset provides RGB images of the sample scans, we took the CLIP+Real-
NVP model from our previous work, chapter 6, on image anomaly detection, and we used it to
identify anomalies in the dataset. Notice that, while the RGB images are more informative for
some specific anomalies (see the anomaly color for the object foam), the overall information
provided to the Real-NVP is more limited than total information in a point cloud.

This setup uses the Vision Transformer(ViT) module of CLIP [73]; the ViT takes the RGB
image as input and produces a 512-sized feature vector. As for the previous approaches, the
vector is then passed to the Real-NVP component.

RGB+XYZ model Finally, we test an RGB+XYZ model by simply concatenating the 512 RGB-
derived features and the 384 XYZ-derived features in a single vector for each sample.

Even in this case with an 896 size vector, the Real-NVP correctly converged and learned a
mapping.

7.4 Experimental Results

We report all the AUC results of the 46 runs (excluding the hyper-parameter searches) in Tables
7.3,7.4,7.5,7.6 and 7.2. The results are color-coded, any value of AUC equal to or lower than
0.5 is colored red; higher values shift from red to yellow and towards green, which is the color
for values near or equal to 1.

In each table, we report the performances split by anomaly type and object class, with the
addition of the AUC considering the whole test set as a binary problem, and the averaged AUC,
built by averaging the AUC of each object class per se.

As detailed by the tables, for all models except random and ones, we also consider the AUC
for the models trained and tested on samples from a single object class; for example, all lines
with bagle as object class, represent models that during training, validation, and testing, only
saw bagels. To the best of our knowledge, we are the first to introduce this kind of experiment
for this dataset; our motivation is to study the effects of each object class’s characteristics (shape
and color) on each specific model (and thus features extractor) performance.

The best-performing model is the RGB, CLIP-based one followed closely by the RGB+XYZ
one. The RGB model, using all objects, achieved an AUC of 0.69 for the test set. We acknowl-
edge that this performance is surpassed by other, more complex, models benchmarked on the
MVTec-3D dataset, but are nonetheless better than the baselines and handcrafted. Moreover,
both the RGB and RGB+XYZ beat the performance of the purposely built approaches proposed
in [7], namely Voxel VM, Voxel AE, and Voxel GAN.

63 7.4 Experimental Results

Table 7.1. Comparing our approaches to the MVTec-3D benchmark

Shape-Guided [20] 0.95
M3DM [96] 0.95

AST [74] 0.94
Back To Feat. [38] 0.87

RGB (Ours) 0.69
RGB+XYZ (Ours) 0.67

Voxel VM [7] 0.61
Voxel AE [7] 0.54
XYZ (Ours) 0.53

Voxel GAN [7] 0.52

Table 7.2. Baselines based Model AUC

Baseline Obj seen Bent Color Comb. Contam. Crack Cut Hole Open Thread Test Test
Avg

random all 0.49 0.53 0.48 0.50 0.50 0.51 0.51 0.55 0.56 0.50 0.51
ones all 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 7.3. XYZ Model AUC

Bent Color Comb. Contam. Crack Cut Hole Open Thread Test Test
Avg

all 0.32 0.96 0.51 0.51 0.58 0.52 0.55 0.61 0.68 0.53 0.58
bagel 0.71 0.67 0.71 0.68 0.69 0.69

cable gland 0.65 0.44 0.56 0.56 0.55 0.55
carrot 0.56 0.53 0.65 0.65 0.59 0.60 0.60
cookie 0.70 0.47 0.58 0.48 0.56 0.56
dowel 0.48 0.44 0.45 0.50 0.47 0.47
foam 0.48 0.65 0.49 0.54 0.54 0.54

peach 0.46 0.49 0.41 0.46 0.46 0.46
potato 0.43 0.47 0.33 0.40 0.41 0.41

rope 0.63 0.66 0.96 0.72 0.75
tire 0.30 0.49 0.50 0.46 0.48 0.44

Table 7.4. RGB Model AUC

Bent Color Comb. Contam. Crack Cut Hole Open Thread Test Test
Avg

all 0.63 0.99 0.78 0.64 0.83 0.59 0.72 0.53 0.61 0.69 0.70
bagel 0.92 0.63 1.00 0.79 0.84 0.83

cable gland 0.65 0.73 0.68 0.62 0.67 0.67
carrot 0.77 0.68 0.71 0.59 0.72 0.69 0.69
cookie 0.62 0.56 0.77 0.52 0.62 0.62
dowel 0.87 0.91 0.77 0.72 0.82 0.82
foam 1.00 0.82 0.70 0.75 0.82 0.82

peach 0.60 0.56 0.66 0.49 0.57 0.58
potato 0.60 0.59 0.43 0.41 0.51 0.51

rope 0.63 0.63 0.87 0.69 0.71
tire 0.48 0.54 0.52 0.59 0.55 0.53

64 7.4 Experimental Results

Table 7.5. XYZ+RGB Model AUC

Bent Color Comb. Contam. Crack Cut Hole Open Thread Test Test
Avg

all 0.53 1.00 0.75 0.63 0.81 0.60 0.66 0.62 0.61 0.67 0.69
bagel 0.93 0.67 0.99 0.81 0.85 0.85

cable gland 0.74 0.69 0.73 0.69 0.71 0.72
carrot 0.76 0.72 0.70 0.62 0.73 0.70 0.70
cookie 0.67 0.58 0.84 0.58 0.67 0.67
dowel 0.83 0.89 0.76 0.63 0.78 0.78
foam 1.00 0.84 0.67 0.63 0.78 0.78

peach 0.57 0.59 0.60 0.49 0.56 0.56
potato 0.60 0.55 0.43 0.37 0.49 0.49

rope 0.62 0.67 0.87 0.70 0.72
tire 0.30 0.54 0.53 0.55 0.52 0.48

Table 7.6. Handcrafted based Model AUC

Bent Color Comb. Contam. Crack Cut Hole Open Thread Test Test
Avg

all 0.35 0.78 0.53 0.51 0.58 0.48 0.48 0.30 0.13 0.49 0.46
bagel 0.52 0.44 0.48 0.48 0.48 0.48

cable gland 0.47 0.49 0.64 0.43 0.51 0.51
carrot 0.51 0.42 0.46 0.49 0.35 0.45 0.45
cookie 0.61 0.58 0.67 0.73 0.65 0.65
dowel 0.59 0.52 0.64 0.51 0.57 0.56
foam 0.67 0.60 0.65 0.69 0.65 0.65

peach 0.52 0.60 0.48 0.48 0.52 0.52
potato 0.00 0.00 0.00 0.00 0.00 0.00

rope 0.60 0.59 0.69 0.62 0.62
tire 0.60 0.48 0.58 0.77 0.61 0.61

65 7.5 Discussion

7.5 Discussion

In this Chapter, we compared different off-the-shelf pre-trained feature extractors combined
with a Real-NVP model to solve the task of 3D anomaly detection on the MVTec-3D dataset.

From our experiments, it is clear that all approaches tested while better than the baselines
are not sufficient for an anomaly detection task. We attribute the limited performances to the
performance of the features extractors; while performing excellently on their original tasks,
the models available are still too limited to solve this task; for example, the XYZ Point-M2AE
extractor is strongly limited by the number of points it accepts in input and thus losing important
local details that might help to detect small anomalies. In addition, we think that the dataset
is too small; this implies that Real-NVP, while correctly converging, fails to learn a mapping of
the normal samples to correctly identify anomalies.

With our results, we demonstrate that a combination of a dataset limitation and additional
complexity when dealing with point clouds versus images leads to a lack of off-the-shelf models
for solving complex 3D vision tasks.

We believe that models such as ours could be used in those situations for which not enough
data is already available to train ad-hoc models. Later in deployment, when enough data is
collected and labeled, more performing bespoke models can be trained and used for the appli-
cation.

66 7.5 Discussion

Chapter 8

Conclusions

In this thesis, we focused our contributions and research efforts on exploring solutions for the
task of hazard detection for mobile robots using visual anomaly detection. Here we outline our
contributions and delineate what we believe might be future steps to improve research in the
field.

Using Visual Anomaly Detection for Finding Hazards for Mobile Robots

Our first two contributions, Chapters 3 and 4, focused on building a dataset for the training of
deep learning-based hazard detection models for robots and on the design of the hazard detector
using visual anomaly detection models on images coming from robots’ front-facing cameras.
The dataset is composed of more than 320‘000 frames collected in three scenarios by two robots,
a drone and a wheeled robot, that traverse tunnels or corridors. In the dataset, normal samples
are composed of images of a tidy empty, and traversable environment; anomalous samples
instead contain different types of objects or situations that might be hazardous for the robot;
examples of anomalies are simple boxes, foam on the floor, or roots from the ceiling. To solve
the hazard detection task we used an undercomplete convolutional autoencoder trained on the
task of reconstructing the input while subject to an information bottleneck at the embedding
level. The autoencoder was trained using only normal samples as these are the only ones
required by anomaly detection models. The experimental results showed that this method for
detecting hazards works and can be used in real-time detection. We demonstrated this last
statement deploying the resulting model in two separate demonstrators showing the realistic
applicability of such an approach. The demonstrators showed the qualitative performance of
real-time hazard detection for robots by correctly detecting all anomalies encountered by a
drone and a wheeled robot.

Defining a Deployment Life Cycle for a Hazard Detection Model

With the work achieved in our previous works and motivated by the real-life performances of
our method, in Chapters 5 and 6, we researched the additional components of a hazard detec-
tion system necessary to employ it in a real-life application. We modified our previous model
with the addition of a Real-NVP model after the undercomplete autoencoder’s encoder. This
new component acted as the anomaly detector and allowed us to introduce the outlier expo-
sure component to the Real-NVP loss. Using outlier exposure we introduced a technique for

67

68 8.1 Future work

training also on anomalous samples eventually collected during robot’s missions. Our experi-
mental setup showed that our solution is effective at increasing the separation degree, in the
Real-NVP’s latent space, between normal and known anomalous samples, while improving the
overall detection performance. With the new opportunity of effectively training on additional
anomalous samples, we then proposed two new active learning methods compatible with deep
learning based anomaly detection. To do so we changed our model architecture by switching
out the to-be-trained autoencoder’s encoder for a pre-trained feature extractor built using vision
transformers called ViT-B/32 from the large multimodal model CLIP. With this setup, we pro-
posed two active learning queries and compared them with six other ones. The results indicated
that when some data is collected in the field, ours are best for selecting informative samples to
be used for retraining the model. With these results, we deployed our model on a real drone
that had to traverse train tunnels. Even in this qualitative demonstration, we detected all the
anomalies that the drone faced.

Exploring 3D Vision as an Alternative to 2D Vision

Having achieved our original objective of detecting hazards for robots using 2D vision, in Chap-
ter 7 we extended our research to 3D vision. We explored if a general-purpose 3D point cloud
feature extraction model, such as Point-M2AE, can be used as the backbone for a 3D anomaly
detector.While promising, our results showed that some limitations are still present in current
backbones and need to be dealt with to achieve a performance comparable to what we can
achieve for 2D anomaly detection.

8.1 Future work

Across our thesis work, we collected future research directions and applications, some explored
in practice and others only thought of. Here is a list of the most interesting to us.

Multimodal Anomaly Detection Given our work on image-based anomaly detection
and the large availability of multimodal vision sensors, such as Azure Kinect camera or thermal
and vision camera or even the presence of simple microphones, we think that one promising
direction to be investigated for the task of hazard detection is the use of multimodal sensory
information for improving the detection of hazards. We recognize that multimodal vision has
been already explored for other vision tasks such as navigation and obstacle detection, but the
nuances of anomaly detection might render working solutions from other fields unusable in our
context.

Domain adaptation One key aspect of environmental understanding in the context of
learning the scenario for developing the hazard detection system is its variability. In our exper-
iments, we implicitly assumed that across experiments and demos, the environments would be
mostly the same; real-world applications in robotics often cannot assume how the environment
will look like, potentially limiting a model application only to similarly looking scenarios to
the training one. We propose as a future research direction the focus on domain adaptation
solutions for anomaly detection models exploring solutions to adapt the normality concept to
change and adapt to different environments.

New Datasets and New General 3D Vision Models Our research on 3D visual anomaly
detection showed that to achieve good performances with this task ad-hoc models have to be
put in place; nonetheless models such as ours can be used as a placeholder before enough data is

69 8.1 Future work

collected. Achieving the performance of foundation models such as CLIP in the image field, will
require novel datasets that span multiple contexts, point cloud resolutions, and sizes to be used
to train the backbone model; we recognize that capturing environment vs capturing an object
with a point cloud are two different processes with different results but recent Gaussian Splat
representation are indicating a possible research direction. With such datasets and approaches,
we think that it would be easier to train proper models that generalize across different contexts
and scopes.

Developing a Commercial Solution for The Market From the inception, my doctoral
studies have been focused on industrial applications of robotics and deep learning-based com-
puter vision; with the results achieved, during the last months of this Ph.D., we started to follow
the steps required to found a startup. In August 2023, we were accepted to the Boldbrain chal-
lenge 1, and in December 2023 we were awarded the second prize. Even more recently we
got accepted at the prestigious Swiss startup competition »venture» 2. Now we are focusing
on bringing anomaly detection to the market as a software solution compatible with robotic
inspection of industrial sites.

1boldbrain.ch
2venture.ch

70 8.1 Future work

Appendix A

Appendix

List of Publications in Chronological Order

[57] Dario Mantegazza, Jérôme Guzzi, Luca Maria Gambardella, and Alessandro Giusti. Video:
Learning Vision-Based Quadrotor Control in User Proximity. 2019 14th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI), pages 369–369, 2019a.
[58]Dario Mantegazza, Jérôme Guzzi, Luca Maria Gambardella, and Alessandro Giusti. Vision-

based Control of a Quadrotor in User Proximity: Mediated vs End-to-End Learning Approaches.
2019 International Conference on Robotics and Automation (ICRA), 6489–6495, 2019b.
[12] Gülcan Can, Dario Mantegazza, Gabriele Abbate, Sébastien Chappuis, and Alessandro

Giusti. Semantic segmentation on Swiss3DCities: A benchmark study on aerial photogram-
metric 3D point cloud dataset. Pattern Recognition Letters, 150: 108–114, 2021.
[1] Gabriele Abbate, Dario Mantegazza, Gülcan Can and Alessandro Giusti. 3D Semantic Seg-

mentation of Urban Point Clouds: a Study of Generalization across Datasets and Cities. Tech-
nical Report to appear on ArXiv, 2021.
[14] Elia Cereda, Marco Ferri, Dario Mantegazza, Nicky Zimmerman, Luca M. Gambardella,

Jérôme Guzzi, Alessandro Giusti, and Daniele Palossi. Improving the Generalization Capabil-
ity of DNNs for Ultra-low Power Autonomous Nano-UAVs. 2021 17th International Conference
on Distributed Computing in Sensor Systems (DCOSS), 327–334, 2021.
[28] Marco Ferri, Dario Mantegazza, Elia Cereda, Nicky Zimmerman, Luca M. Gambardella,

Daniele Palossi, Jérôme Guzzi, and Alessandro Giusti Training Lightweight CNNs for Human-
Nano drone Proximity Interaction from Small Datasets using Background Randomization.
Workshop paper published on ArXiv, 2021.
[59] Dario Mantegazza, Alessandro Giusti, Luca M. Gambardella, Andrea Rizzoli, Jérôme

Guzzi. Challenges in Visual Anomaly Detection for Mobile Robots. Workshop paper presented
at the ICRA 2022 Workshop on Safe and Reliable Robot Autonomy under Uncertainty, distributed
on ArXiv
[61] Dario Mantegazza, Carlos Redondo, Fran Espada, Luca M. Gambardella, Alessandro
Giusti, and Jérôme Guzzi. Sensing Anomalies as Potential Hazards: Datasets and Bench-
marks. Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science,
13546: 205–219, 2022b.
[60] Dario Mantegazza, Alessandro Giusti, Luca Maria Gambardella, and Jérôme Guzzi. An

Outlier Exposure Approach to Improve Visual Anomaly Detection Performance for Mobile

71

72

Robots. IEEE Robotics and Automation Letters, 7 (4): 11354–11361, 2022a.
[63]Dario Mantegazza, Alind Xhyra, Alessandro Giusti, and Jérôme Guzzi. Active Anomaly De-

tection for Autonomous Robots: A Benchmark Towards Autonomous Robotic Systems. TAROS
2022. Lecture Notes in Computer Science, 315-327 , 2023.
[56] Dario Mantegazza, and Alessandro Giusti. Detecting Anomalous 3D Point Clouds Using

Pre-trained Feature Extractors. VISAPP, to appear in proceedings, 2024.
Notes on Other Publications We published a conference paper [58] and a video paper [57]
related to our research on Human pose estimation from frontal drone’s camera images using
reactive models based on Convolutional Neural Networks. While this work is the baseline for
the following research done by others at IDSIA on drone perception [14, 28, 68, 104, 69],
[57, 58] are only marginally related to the content of this Ph.D. thesis.

Technical Reports

• Innosuisse Nomoko - Research Plan, Tech. Rep. 2019.

• 1-SWARM - D4.1: Functional architecture of the Swarm Intelligence Algorithmic Frame-
work, Tech. Rep. 2021.

• 1-SWARM - D4.2: Algorithms for seamless CPSoS navigation and planning in human envi-
ronments, Tech. Rep. 2022.

Datasets

Swiss3DCities In [12]we released a semantically labeled dataset of 3D point clouds from five
different cities. The dataset is available at https://zenodo.org/record/4390295.

Hazards&Robots In [60, 61] we released an image-based dataset acquired in robot explo-
ration scenarios for the task of Anomaly Detection. The dataset is available at https://github.
com/idsia-robotics/hazard-detection.

Software Releases

API for Semantic Segmentation of Point clouds For the Innosuisse project (grant 51NF40_185543)
we released documented API to train, test, and deploy semantic segmentation models for an-
alyzing 3D point clouds. This tool worked in combination with a custom database (built by
SUPSI) that stored the point clouds collected by Nomoko. In addition, our API provides a sim-
ple web-based GUI to explore the segmentation results The API, written in Python and based
on PyTorch, is a crucial part of the Nomoko segmentation pipeline.

API for Hazard detection for autonomous drones For the 1-SWARM project, in Chapter 4 we
released over various release versions, the API to train, test, and deploy an Anomaly Detection
model. This model is deployed, onboard an autonomous drone, by our partner Hovering So-
lutions to detect environmental hazards for the drone itself. The API, in addition to the model
and relative documentation, provides three different GUIs for visualizing the model prediction.
This API is built and optimized to run onboard a Jetson TX2 using Python, PyTorch, and Docker.

73

Paper code release As part of our publications process we release, when possible, the relative
code. Our papers [58, 57, 1, 60, 61] have relative repositories that provide documented source
code.

74

Bibliography

[1] Gabriele Abbate, Dario Mantegazza, Gülcan Can, and Alessandro Giusti. 3d semantic
segmentation of urban point clouds: a study of generalization across datasets and cities.
Technical Report, 2021. To appear on ArXiv.

[2] Abdelrahman Abdelhamed, Marcus A Brubaker, and Michael S Brown. Noise Flow: Noise
Modeling with Conditional Normalizing Flows. In International Conference on Computer
Vision (ICCV), 2019.

[3] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, April
1988. ISSN 1573-0565. doi: 10.1023/A:1022821128753. URL https://doi.org/10.
1023/A:1022821128753.

[4] Vincent BarnabÃ©-Lortie, Colin Bellinger, and Nathalie Japkowicz. Active learning for
one-class classification. In 2015 IEEE 14th International Conference on Machine Learning
and Applications (ICMLA), pages 390–395, 2015. doi: 10.1109/ICMLA.2015.167.

[5] Eric B Baum and Kenneth Lang. Query learning can work poorly when a human oracle
is used. In International joint conference on neural networks, volume 8, page 8. Beijing
China, 1992.

[6] William H. Beluch, Tim Genewein, Andreas NÃ¼rnberger, and Jan M. KÃ¶hler.
The Power of Ensembles for Active Learning in Image Classification. pages 9368–
9377, 2018. URL https://openaccess.thecvf.com/content_cvpr_2018/html/Beluch_
The_Power_of_CVPR_2018_paper.html.

[7] Paul Bergmann., Xin Jin., David Sattlegger., and Carsten Steger. The mvtec 3d-ad dataset
for unsupervised 3d anomaly detection and localization. In Proceedings of the 17th In-
ternational Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 5: VISAPP,, pages 202–213. INSTICC, SciTePress, 2022. ISBN
978-989-758-555-5. doi: 10.5220/0010865000003124.

[8] Paul Bergmann et al. The mvtec anomaly detection dataset: a comprehensive real-world
dataset for unsupervised anomaly detection. Int. Journal of Computer Vision, 129:1038–
1059, 2021.

[9] Zachary Birnbaum et al. Unmanned aerial vehicle security using behavioral profiling. In
2015 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1310–1319,
2015. doi: 10.1109/ICUAS.2015.7152425.

75

76 Bibliography

[10] Hermann Blum et al. The fishyscapes benchmark: Measuring blind spots in semantic
segmentation. Int. Journal of Computer Vision, 129(11):3119–3135, 2021.

[11] Samuel Budd, Emma C. Robinson, and Bernhard Kainz. A survey on active learning and
human-in-the-loop deep learning for medical image analysis. Medical Image Analysis, 71:
102062, 2021. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.2021.102062.

[12] Gülcan Can, Dario Mantegazza, Gabriele Abbate, Sébastien Chappuis, and Alessandro
Giusti. Semantic segmentation on swiss3dcities: A benchmark study on aerial pho-
togrammetric 3d pointcloud dataset. Pattern Recognition Letters, 150:108–114, 2021.

[13] Andrea Castellani, Sebastian Schmitt, and Stefano Squartini. Real-World Anomaly Detec-
tion by Using Digital Twin Systems and Weakly Supervised Learning. IEEE Transactions on
Industrial Informatics, 17(7):4733–4742, July 2021. ISSN 1551-3203, 1941-0050. doi:
10.1109/TII.2020.3019788. URL https://ieeexplore.ieee.org/document/9179030/.

[14] Elia Cereda, Marco Ferri, Dario Mantegazza, Nicky Zimmerman, Luca M. Gambardella,
JÃ©rÃ´me Guzzi, Alessandro Giusti, and Daniele Palossi. Improving the generalization
capability of dnns for ultra-low power autonomous nano-uavs. In 2021 17th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS), pages 327–334,
2021. doi: 10.1109/DCOSS52077.2021.00060.

[15] Punarjay Chakravarty, Alan Miao Zhang, Raymond Austin Jarvis, and Lindsay Kleeman.
Anomaly detection and tracking for a patrolling robot. In Proc. of the Australiasian Con-
ference on Robotics and Automation 2007, pages 1 – 9, 2007. ISBN 978-0-9587583-9-0.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3), jul 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882.

[17] Scott Chen and Ramesh Gopinath. Gaussianization. In Advances in Neural Information
Processing Systems (NIPS), volume 13, 2000.

[18] Kyunghyun Cho et al. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, October 2014. doi:
10.3115/v1/D14-1179.

[19] Peter Christiansen et al. Deepanomaly: Combining background subtraction and deep
learning for detecting obstacles and anomalies in an agricultural field. Sensors, 16(11):
1904, Nov 2016. ISSN 1424-8220. doi: 10.3390/s16111904.

[20] Yu-Min Chu, Chieh Liu, Ting-I Hsieh, Hwann-Tzong Chen, and Tyng-Luh Liu. Shape-
guided dual-memory learning for 3D anomaly detection. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 6185–6194. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/chu23b.html.

[21] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine Learning, 15(2):201–221, May 1994. ISSN 1573-0565. doi:
10.1007/BF00993277. URL https://doi.org/10.1007/BF00993277.

77 Bibliography

[22] Marius Cordts et al. The cityscapes dataset for semantic urban scene understanding. In
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3213–3223, 2016.

[23] Jia Deng et al. Imagenet: A large-scale hierarchical image database. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[24] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
nvp, 2016.

[25] Runpei Dong, Zekun Qi, Linfeng Zhang, Junbo Zhang, Jianjian Sun, Zheng Ge, Li Yi, and
Kaisheng Ma. Autoencoders as cross-modal teachers: Can pretrained 2d image trans-
formers help 3d representation learning? In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=8Oun8ZUVe8N.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale, June 2021. URL http://arxiv.org/abs/2010.11929.
arXiv:2010.11929 [cs].

[27] Sarah M. Erfani and Sothers. High-dimensional and large-scale anomaly detection using
a linear one-class svm with deep learning. Pattern Recognition, 58:121–134, 2016. ISSN
0031-3203. doi: 10.1016/j.patcog.2016.03.028.

[28] Marco Ferri, Dario Mantegazza, Elia Cereda, Nicky Zimmerman, Luca M Gambardella,
Daniele Palossi, Jérôme Guzzi, and Alessandro Giusti. Training lightweight cnns for
human-nanodrone proximity interaction from small datasets using background random-
ization. arXiv preprint arXiv:2110.14491, 2021.

[29] Alberto Floris, Luca Frittoli, Diego Carrera, and Giacomo Boracchi. Composite layers
for deep anomaly detection on 3d point clouds, 2022. URL https://arxiv.org/abs/2209.
11796.

[30] Luca Frittoli. ADVANCED LEARNING METHODS FOR ANOMALY DETECTION IN MULTI-
VARIATE DATASTREAMS AND POINT CLOUDS. PhD thesis, Politecnico Milano, 2022.

[31] Jie Geng et al. High-resolution sar image classification via deep convolutional autoen-
coders. IEEE Geoscience and Remote Sensing Letters, 12(11):2351–2355, 2015.

[32] Ian J. Goodfellow et al. Generative adversarial networks, 2014.

[33] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep clustering with convolutional
autoencoders. In International conference on neural information processing, pages 373–
382. Springer, 2017.

[34] Matthias Haselmann, Dieter P. Gruber, and Paul Tabatabai. Anomaly detection using
deep learning based image completion. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 1237–1242, 2018. doi: 10.1109/
ICMLA.2018.00201.

[35] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv, 2016.

78 Bibliography

[36] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. arXiv, 2018.

[37] Jonathan Ho et al. Flow++: Improving flow-based generative models with variational
dequantization and architecture design. In International Conference on Machine Learning,
pages 2722–2730. PMLR, 2019.

[38] Eliahu Horwitz and Yedid Hoshen. Back to the Feature: Classical 3D Fea-
tures Are (Almost) All You Need for 3D Anomaly Detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2967–2976, 2023.
URL https://openaccess.thecvf.com/content/CVPR2023W/VAND/html/Horwitz_Back_
to_the_Feature_Classical_3D_Features_Are_Almost_All_CVPRW_2023_paper.html.

[39] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural Au-
toregressive Flows. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pages 2078–2087. PMLR, July 2018. URL https://proceedings.mlr.press/
v80/huang18d.html.

[40] Marco Hutter et al. Anymal - a highly mobile and dynamic quadrupedal robot. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 38–44,
2016. doi: 10.1109/IROS.2016.7758092.

[41] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[42] Hannah R Kerner et al. Novelty detection for multispectral images with application to
planetary exploration. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):9484–9491, Jul. 2019. doi: 10.1609/aaai.v33i01.33019484.

[43] Eliahu Khalastchi, Meir Kalech, Gal A Kaminka, and Raz Lin. Online data-driven anomaly
detection in autonomous robots. Knowledge and Information Systems, 43(3):657–688,
2015. doi: 10.1007/s10115-014-0754-y.

[44] Eliahu Khalastchi et al. Online anomaly detection in unmanned vehicles. In The 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS
’11, page 115-122, Richland, SC, 2011. ISBN 0982657153.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[46] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[47] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. Advances in neural information processing systems, 31, 2018.

[48] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An in-
troduction and review of current methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(11):3964–3979, 2021. doi: 10.1109/TPAMI.2020.2992934.

[49] M.A. Kramer. Autoassociative neural networks. Computers & Chemical Engineering, 16
(4):313–328, 1992. ISSN 0098-1354. doi: 10.1016/0098-1354(92)80051-A. Neutral
network applications in chemical engineering.

79 Bibliography

[50] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,
University of Toronto, 2009.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:
1097–1105, 2012.

[52] Punit Kumar and Atul Gupta. Active Learning Query Strategies for Classification, Re-
gression, and Clustering: A Survey. Journal of Computer Science and Technology, 35
(4):913–945, July 2020. ISSN 1860-4749. doi: 10.1007/s11390-020-9487-4. URL
https://doi.org/10.1007/s11390-020-9487-4.

[53] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3,
2015.

[54] Yann LeCun et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[55] David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers.
In Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’94, pages 3–12, Berlin, Heidelberg, August
1994. Springer-Verlag. ISBN 978-0-387-19889-7.

[56] Dario Mantegazza and Alessandro Giusti. Detecting Anomalous 3D Point Clouds Using
Pre-trained Feature Extractors. Rome, IT, 2024. To appear.

[57] Dario Mantegazza, JÃ©rÃ´me Guzzi, Luca M Gambardella, and Alessandro Giusti.
Video: Learning vision-based quadrotor control in user proximity. In HRI ’19: 2019
ACM/IEEE International Conference on Human-Robot Interaction, March 11-14, 2019,
Daegu, Rep. of Korea, March 2019. doi: 10.1109/HRI.2019.8673022.

[58] Dario Mantegazza, JÃ©rÃ´me Guzzi, Luca Maria Gambardella, and Alessandro Giusti.
Vision-based control of a quadrotor in user proximity: Mediated vs end-to-end learning
approaches. 2019 IEEE International Conference on Robotics and Automation (ICRA),
2019. doi: 10.1109/ICRA.2019.8794377. URL https://github.com/idsia-robotics/
proximity-quadrotor-learning.

[59] Dario Mantegazza, Alessandro Giusti, Luca M. Gambardella, Andrea Rizzoli, and
JÃ©rÃ´me Guzzi. Challenges in visual anomaly detection for mobile robots, 2022. URL
https://arxiv.org/abs/2209.10995. Workshop paper presented at the ICRA 2022 Work-
shop on Safe and Reliable Robot Autonomy under Uncertainty.

[60] Dario Mantegazza, Alessandro Giusti, Luca Maria Gambardella, and JÃ©rÃ´me Guzzi.
An outlier exposure approach to improve visual anomaly detection performance for mo-
bile robots. IEEE Robotics and Automation Letters, pages 1–8, 2022. doi: 10.1109/LRA.
2022.3192794.

[61] Dario Mantegazza, Carlos Redondo, Fran Espada, Luca M. Gambardella, Alessan-
dro Giusti, and Jérôme Guzzi. Sensing anomalies asÂ potential hazards: Datasets
andÂ benchmarks. In Salvador Pacheco-Gutierrez, Alice Cryer, Ipek Caliskanelli, Harun
Tugal, and Robert Skilton, editors, Towards Autonomous Robotic Systems, pages 205–219.

80 Bibliography

Springer International Publishing, 2022. ISBN 978-3-031-15908-4. doi: 10.1007/978-
3-031-15908-4_17.

[62] Dario Mantegazza, Alind Xhyra, Luca M. Gambardella, Alessandro Giusti, and Jerome
Guzzi. Hazards&Robots: A Dataset for Visual Anomaly Detection in Robotics, April 2023.
URL https://zenodo.org/record/7859211.

[63] Dario Mantegazza, Alind Xhyra, Alessandro Giusti, and JÃ©rÃ´me Guzzi. Active
Anomaly Detection for Autonomous Robots: A Benchmark. In Fumiya Iida, Perla
Maiolino, Arsen Abdulali, and Mingfeng Wang, editors, Towards Autonomous Robotic Sys-
tems, Lecture Notes in Computer Science, pages 315–327. Springer Nature Switzerland,
2023. ISBN 978-3-031-43360-3. doi: 10.1007/978-3-031-43360-3_26.

[64] Mana Masuda, Ryo Hachiuma, Ryo Fujii, Hideo Saito, and Yusuke Sekikawa. Toward
unsupervised 3d point cloud anomaly detection using variational autoencoder. In 2021
IEEE International Conference on Image Processing (ICIP), pages 3118–3122, 2021. doi:
10.1109/ICIP42928.2021.9506795.

[65] Matthew D. Mitchell et al. Living on the edge: how does environmental risk affect the
behavioural and cognitive ecology of prey? Animal Behaviour, 115:185–192, 2016. ISSN
0003-3472. doi: 10.1016/j.anbehav.2016.03.018.

[66] Lucia Moretti, Marleen Hentrup, Kurt Kotrschal, and Friederike Range. The influence of
relationships on neophobia and exploration in wolves and dogs. Animal Behaviour, 107:
159–173, 2015. ISSN 0003-3472. doi: 10.1016/j.anbehav.2015.06.008.

[67] Yuval Netzer et al. Reading digits in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[68] Daniele Palossi. On the Autonomous Navigation of Nano-UAVs. PhD thesis, ETH Zurich,
2019.

[69] Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna Müller,
Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and Jérôme Guzzi. Fully on-
board ai-powered human-drone pose estimation on ultralow-power autonomous flying
nano-uavs. IEEE Internet of Things Journal, 9(3):1913–1929, 2021.

[70] Daehyung Park et al. Multimodal execution monitoring for anomaly detection during
robot manipulation. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 407–
414, 2016. doi: 10.1109/ICRA.2016.7487160.

[71] Daehyung Park et al. A multimodal anomaly detector for robot-assisted feeding using an
lstm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3):1544–
1551, 2018. doi: 10.1109/LRA.2018.2801475.

[72] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296,
1985.

[73] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Super-
vision, February 2021. URL http://arxiv.org/abs/2103.00020. arXiv:2103.00020 [cs].

81 Bibliography

[74] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric
Student-Teacher Networks for Industrial Anomaly Detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 2592–
2602, 2023. URL https://openaccess.thecvf.com/content/WACV2023/html/Rudolph_
Asymmetric_Student-Teacher_Networks_for_Industrial_Anomaly_Detection_WACV_
2023_paper.html.

[75] Lukas Ruff et al. Deep one-class classification. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 4393–4402, 10–15 Jul 2018.

[76] Lukas Ruff et al. A unifying review of deep and shallow anomaly detection. Proceedings
of the IEEE, 109(5):756–795, 2021. doi: 10.1109/JPROC.2021.3052449.

[77] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli. Ad-
versarially learned one-class classifier for novelty detection. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 3379–3388, 2018. doi:
10.1109/CVPR.2018.00356.

[78] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on
Machine Learning for Sensory Data Analysis, MLSDA’14, page 4-11, New York, NY, USA,
2014. ISBN 9781450331593. doi: 10.1145/2689746.2689747.

[79] Natasa Sarafijanovic-Djukic and Jesse Davis. Fast distance-based anomaly detection in
images using an inception-like autoencoder. In Petra Kralj Novak, Tomislav Šmuc, and
Sašo Džeroski, editors, Discovery Science, pages 493–508, Cham, 2019. ISBN 978-3-030-
33778-0. doi: 10.1007/978-3-030-33778-0\textunderscore37.

[80] Thomas Schlegl et al. Unsupervised anomaly detection with generative adversarial net-
works to guide marker discovery. In Information Processing in Medical Imaging, pages
146–157, Cham, 2017. ISBN 978-3-319-59050-9. doi: 10.1007/978-3-319-59050-
9\textunderscore12.

[81] Thomas Schlegl et al. f-anogan: Fast unsupervised anomaly detection with generative
adversarial networks. Medical image analysis, 54:30–44, 2019.

[82] Luke Scime and Jack Beuth. A multi-scale convolutional neural network for autonomous
anomaly detection and classification in a laser powder bed fusion additive manufacturing
process. Additive Manufacturing, 24:273–286, 2018. ISSN 2214-8604. doi: 10.1016/j.
addma.2018.09.034.

[83] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=H1aIuk-RW.

[84] Burr Settles. Active learning literature survey. 2009.

[85] David Sloan Wilson, Anne B. Clark, Kristine Coleman, and Ted Dearstyne. Shyness and
boldness in humans and other animals. Trends in Ecology & Evolution, 9(11):442–446,
1994. ISSN 0169-5347. doi: 10.1016/0169-5347(94)90134-1.

82 Bibliography

[86] Asim Smailagic, Pedro Costa, Hae Young Noh, Devesh Walawalkar, Kartik Khandelwal,
Adrian Galdran, Mostafa Mirshekari, Jonathon Fagert, Susu Xu, Pei Zhang, and AurÃ©lio
Campilho. Medal: Accurate and robust deep active learning for medical image analy-
sis. In 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 481–488, 2018. doi: 10.1109/ICMLA.2018.00078.

[87] Mareike StÃ¶we, Thomas Bugnyar, Bernd Heinrich, and Kurt Kotrschal. Effects of group
size on approach to novel objects in ravens (corvus corax). Ethology, 112(11):1079–
1088, 2006. doi: 10.1111/j.1439-0310.2006.01273.x.

[88] Christian Szegedy et al. Going deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015. doi: 10.1109/CVPR.
2015.7298594.

[89] Xuning Tang, Yihua Shi Astle, and Craig Freeman. Deep Anomaly Detection with
Ensemble-Based Active Learning. In 2020 IEEE International Conference on Big Data (Big
Data), pages 1663–1670, December 2020. doi: 10.1109/BigData50022.2020.9378315.

[90] Ole Tange et al. Gnu parallel-the command-line power tool. The USENIX Magazine, 36
(1):42–47, 2011.

[91] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large
data set for nonparametric object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):1958–1970, 2008.

[92] Holger Trittenbach and Klemens BÃ¶hm. One-Class Active Learning for Outlier Detection
with Multiple Subspaces. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM ’19, pages 811–820, New York, NY, USA,
November 2019. Association for Computing Machinery. ISBN 978-1-4503-6976-3. doi:
10.1145/3357384.3357873. URL https://doi.org/10.1145/3357384.3357873.

[93] Holger Trittenbach, Adrian Englhardt, and Klemens BÃ¶hm. An overview and a
benchmark of active learning for outlier detection with one-class classifiers. Expert
Systems with Applications, 168:114372, April 2021. ISSN 0957-4174. doi: 10.
1016/j.eswa.2020.114372. URL https://www.sciencedirect.com/science/article/pii/
S0957417420310496.

[94] Nina Tuluptceva, Bart Bakker, Irina Fedulova, and Anton Konushin. Perceptual image
anomaly detection. In Asian Conference on Pattern Recognition, pages 164–178. Springer,
2019.

[95] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Ye-
ung. Revisiting point cloud classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[96] Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao Wang, and Chengjie Wang.
Multimodal Industrial Anomaly Detection via Hybrid Fusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8032–
8041, June 2023.

83 Bibliography

[97] Lorenz Wellhausen, RenÃ© Ranftl, and Marco Hutter. Safe robot navigation via multi-
modal anomaly detection. IEEE Robotics and Automation Letters, 5(2):1326–1333, 2020.
doi: 10.1109/LRA.2020.2967706.

[98] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–
1920, 2015.

[99] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv, 2016.

[100] Jiaxin Zhang, Kyle Saleeby, Thomas Feldhausen, Sirui Bi, Alex Plotkowski, and David
Womble. Self-Supervised Anomaly Detection via Neural Autoregressive Flows with Ac-
tive Learning. October 2021. URL https://openreview.net/forum?id=LdWEo5mri6.

[101] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao, Dong Wang,
Yu Qiao, and Hongsheng Li. Point-M2AE: Multi-scale Masked Autoencoders
for Hierarchical Point Cloud Pre-training. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems, volume 35, pages 27061–27074. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
ad1d7a4df30a9c0c46b387815a774a84-Paper-Conference.pdf.

[102] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng
Gao, and Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
8552–8562, June 2022.

[103] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point Transformer,
September 2021. URL http://arxiv.org/abs/2012.09164. arXiv:2012.09164 [cs].

[104] Nicky Zimmerman. Embedded Implementation of Reactive End-to-End Visual Controller for
Nano-Drones. PhD thesis, Università della Svizzera Italiana, 2020.

84 Bibliography

