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a b s t r a c t

In this paper, we consider the following two problems: (i) Deletion Blocker(α) where
we are given an undirected graph G = (V , E) and two integers k, d ≥ 1 and ask whether
there exists a subset of vertices S ⊆ V with |S| ≤ k such that α(G−S) ≤ α(G)−d, that is
the independence number of G decreases by at least d after having removed the vertices
from S; (ii) Transversal(α) where we are given an undirected graph G = (V , E) and two
integers k, d ≥ 1 and ask whether there exists a subset of vertices S ⊆ V with |S| ≤ k
such that for every maximum independent set I we have |I ∩ S| ≥ d. We show that
both problems are polynomial-time solvable in the class of co-comparability graphs by
reducing them to the well-known Vertex Cut problem. Our results generalise a result
of Chang et al. (2001) and a recent result of Hoang et al. (2023).
©2024 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Graph parameters like for instance the independence number, the clique number, the chromatic number, and the
omination number have been intensively studied in the literature. While one is usually interested in maximising or
inimising such parameters, another interesting question one may ask is by how much one can decrease the value of
graph parameter by using a limited number of some predefined graph operations (like for instance vertex deletions
r edge contractions). This leads to so-called blocker problems which are defined as follows. For a fixed set S of graph

operations, a given graph G = (V , E), two integers k and d, and some graph parameter π , we want to know if we can
transform G into a graph G′ by using at most k operations from the set S and such that π (G′) ≤ π (G) − d. The integer d
is called the threshold.

Over the last years, blocker problems have been investigated intensively in the literature (see for instance
[2–6,8,9,11–15,17–19,21–23,25]) and have relations to many other well known problems (like for instance Hadwiger
Number, Bipartite Contraction, and Maximum Induced Bipartite Subgraph; see [9] for more examples). The graph
parameters that have been considered were for instance the matching number (see [25]), the chromatic number
(see [21,22]), the (total or semitotal) domination number (see [12]), the length of a longest path (see [18]), the clique
number (see [21]), the weight of a minimum dominating set (see [20]), the vertex cover number (see [3]), and the
independence number (see [8,9]). Regarding the graph operations, the set S always consisted in a single operation: vertex
deletion, edge deletion, edge contraction or edge addition.

A related problem to the blocker problem is the so-called transversal problem. Given a graph G = (V , E), a property
P , and two integers d and k, we want to know if there exists a set V ′

⊆ V (resp. a set E ′
⊆ E) of size at most k that
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Fig. 1. A 2-transversal of the graph P5 (left) and a 2-deletion blocker of P5 (right), highlighted with light blue vertices. Both are of minimum size.
Note that the 2-deletion blocker is a 2-transversal but the 2-transversal is not a 2-deletion blocker. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

intersects each set of vertices (resp. set of edges) satisfying property P on at least d vertices (resp. d edges). For example,
if P corresponds to ‘‘being a maximum independent set’’, the transversal problem consists in asking whether one can find
a set of at most k vertices which intersects every maximum independent set on at least d vertices. Another example is
the well-known Feedback Vertex Set problem. Here, we are interested in finding a subset of vertices of size at most k
which intersects every cycle on at least one vertex. Thus, it is a transversal problem with P corresponding to ‘‘being a
cycle’’ and d = 1.

Transversal problems have also received much attention in the literature over the last years. Properties considered
were for instance ‘‘being a maximum independent set’’ (see [4,5]), ‘‘being a maximum matching’’ (see [23,25]), ‘‘being a
maximal clique’’ (see [16]), and ‘‘being a cycle’’ (see [1]).

In this paper, we will focus on the blocker problem with π being the independence number α and S consisting in
a single operation, namely vertex deletion, as well as on the transversal problem with P corresponding to ‘‘being a
maximum independent set’’. We formally define our problems as follows.

Deletion Blocker(α)

Instance: A graph G = (V , E) and two integers d, k ≥ 1.

Question: Is there a set S ⊆ V of cardinality |S| ≤ k such that α(G − S) ≤ α(G) − d?

We denote by d-Deletion Blocker(α) the problem Deletion Blocker(α), when d is fixed. A d-deletion blocker of
G = (V , E) of size k is a set S ⊆ V with |S| ≤ k such that α(G − S) ≤ α(G) − d.

Transversal(α)

Instance: A graph G = (V , E) and two integers d, k ≥ 1.

Question: Is there a set S ⊆ V of cardinality |S| ≤ k such that for every maximum independent set I we have
|I ∩ S| ≥ d?

We denote by d-Transversal(α) the problem Transversal(α), when d is fixed. A d-transversal of G = (V , E) of size k
s a set S ⊆ V with |S| ≤ k such that for every maximum independent set I we have |I ∩ S| ≥ d.

Notice that for d = 1, the problems 1-Transversal(α) and 1-Deletion Blocker(α) are equivalent. This does not hold for
> 1, as can be seen in Fig. 1. If we consider the clique number ω, respectively the property ‘‘being a maximum clique’’,
e can define in an analogous way the problems Deletion Blocker(ω) and Transversal(ω). Since an independent set

n a graph G corresponds to a clique in the complement graph of G, it follows immediately that from any computational
omplexity result for Deletion Blocker(α) (resp. Transversal(α)) in some graph class G, we can deduce a corresponding
omputational complexity result for Deletion Blocker(ω) (resp. Transversal(ω)) in the complement graph class of G and
ice versa.
Since both problems are easily seen to be difficult in general graphs, much effort has been put on special graph classes.

or Deletion Blocker(α), it has been shown that it is NP-complete in split graphs (see [8]), and thus in chordal and
erfect graphs. A recent improvement of this result states that it is NP-complete in chordal, and thus in perfect graphs,
ven if d = 1 (see [17]), i.e. that 1-Deletion Blocker(α) is NP-complete in chordal graphs. On the positive side, Deletion
locker(α) is polynomial-time solvable in trees (see [3,8]), bipartite graphs (see [3,8]), cobipartite graphs (see [9]), and
ographs (see [3]). For split graphs, it has been shown that d-Deletion Blocker(α) is polynomial-time solvable (see [8]).
n a recent paper, Hoang et al. show that it can be solved in polynomial time for interval graphs (see [15]).

Regarding Transversal(α), it was shown by Bentz et al. that this problem is solvable in polynomial time on trees
see [4]) which was then improved to bipartite graphs in [5]. Notice that the authors considered here even weighted
aximum independent sets. From the fact that 1-Transversal(α) and 1-Deletion Blocker(α) are equivalent, it follows

rom [17] that 1-Transversal(α) is NP-complete for chordal graphs, and thus for perfect graphs. Also, it follows from [7]
hat 1-Transversal(α) is polynomial-time solvable in co-comparability graphs.

In this paper, we will consider the class of co-comparability graphs, which is a subclass of the class of perfect graphs,

nd show that both problems Transversal(α) and Deletion Blocker(α) are polynomial-time solvable in this graph class.

308



F. Lucke and B. Ries Discrete Applied Mathematics 356 (2024) 307–321

T
D
r

i
r
w
g
c

2

g
s

d

v
s
i
s
i

c
c
t

P

b

W

O

v

his generalises the results of [7,15]. Notice that, as explained above, our results directly imply that Transversal(ω) and
eletion Blocker(ω) can be solved in polynomial time in comparability graphs. In order to show our results, we will
educe both problems to the Vertex Cut problem which can be solved in polynomial time (see [10]).

Our paper is structured as follows. Section 2 contains notations and terminology. In Section 3, we present some
mportant properties of maximum independent sets in co-comparability graphs. Section 4 contains one of our main
esults stating that Transversal(α) is solvable in polynomial time in co-comparability graphs. Sections 5 and 6 deal
ith the Deletion Blocker(α) problem. After introducing some more properties of independent sets in co-comparability
raphs (Section 5), we show our second main result, namely that Deletion Blocker(α) is polynomial-time solvable in
o-comparability graphs in Section 6. We finish with a conclusion and further research directions in Section 7.

. Preliminaries

In this paper, we only consider finite graphs without self-loops and multiple edges. Unless specified otherwise, all
raphs will be undirected and not necessarily connected. Let G = (V , E) be a graph. For U ⊆ V , we denote by G[U] the
ubgraph of G induced by U , i.e. the graph with vertex set U and edge set {uv ∈ E|u, v ∈ U}. We write G−U = G[V \U].
We denote by G the complement of G, that is the graph with vertex set V and edge set E = {uv|u, v ∈ V , uv /∈ E}. We
efine NG(v) as the neighbourhood of a vertex v ∈ V in G, i.e. the set of vertices w ∈ V such that vw ∈ E.
A vertex v ∈ V is said to be complete to some vertex set U ⊆ V , if U ⊆ NG(v). A clique is a set of pairwise adjacent

ertices and the clique number ω denotes the size of a maximum clique of G. We call a vertex v ∈ V independent to
ome vertex set U ⊆ V , if U ∩ NG(v) = ∅. An independent set in G is a set of pairwise non-adjacent vertices of G. The
ndependence number α is the size of a maximum independent set of G. For an independent set S, another independent
et I is called an extension of S if S ⊆ I . The set S is then called extendable. If I is a maximum independent set, we say it
s a maximum extension of S and S is max-extendable.

We denote by [[d]], with d ∈ N∗, the set {1, 2, . . . , d}.
A transitive ordering ≺ of V is an ordering of the vertices such that if u ≺ v ≺ w and uv, vw ∈ E, then uw ∈ E. A

omparability graph is a graph admitting a transitive ordering of its vertices. The complement of a comparability graph is
alled a co-comparability graph. A transitive ordering of a comparability graph gives an ordering on its complement with
he following property.

roperty 1. Let G = (V , E) be a co-comparability graph and let ≺ be a transitive ordering of V in the comparability graph G.
Then, ≺ is an ordering of V in G such that if u ≺ v ≺ w and uv, vw /∈ E, then uw /∈ E.

In the rest of the paper, whenever we consider an ordering ≺ of the vertices of a co-comparability graph G, we mean an
ordering satisfying Property 1, that is, it is a transitive ordering of its complementary comparability graph. From Property 1,
we can directly deduce the following property.

Property 2. Let G = (V , E) be a co-comparability graph and let ≺ be a transitive ordering of V in the comparability graph G.
Let u, v, w ∈ V with v ≺ w, uv, vw /∈ E and uw ∈ E. Then v ≺ u.

Consider a graph G = (V , E) and an ordering ≺ of its vertex set V . Let U ⊆ V and v ∈ V \ U . We say that U ≺ v, if
u ≺ v for every u ∈ U .

Let G = (V , E) be a co-comparability graph with a vertex ordering ≺ and let I be an independent set in G. We denote
y posI (v), the position of vertex v in I , that is posI (v) = | {u ∈ I|u ≺ v} |+1. A left extension (resp. right extension) of v ∈ V

is an independent set I ⊆ V , containing only vertices u ∈ V with u ≺ v (resp. v ≺ u) and such that v is independent to I .
e make the following easy observations.

bservation 3. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺ and u, v ∈ V with u ≺ v and uv /∈ E.

– Let Iuℓ be a left extension of u. Then, Iuℓ is a left extension of v.
– Let Ivr be a right extension of v. Then, Ivr is a right extension of u.

Let G = (V , A) be a directed graph and let s, t ∈ V . We call a directed path from s to t an s-t-path. An s-t-cut in G is a
ertex set C ⊆ V \ {s, t}, such that there is no s-t-path in G − C . We will use the following problem.

Vertex Cut

Instance: A directed graph G = (V , A) with two specified vertices s, t and an integer k ≥ 0.

Question: Is there an s-t-cut C ⊆ V \ {s, t} with |C | ≤ k?
309
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Fig. 2. A co-comparability graph and the sets L1, . . . , L4 . The black vertices are not contained in any maximum independent set.

3. Some properties of independent sets in co-comparability graphs

In this section, we will present some structural properties of independent sets in co-comparability graphs. These
properties are crucial for our proofs in Section 4, where we prove that Transversal(α) is polynomial-time solvable in
this graph class.

Lemma 4. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let I1, I2 be two maximum independent
sets in G. Let α = α(G) and let I1 = {u1, . . . , uα} and I2 = {v1, . . . , vα}, where u1 ≺ · · · ≺ uα and v1 ≺ · · · ≺ vα . Assume
i, j ∈ [[α]], such that ui = vj. Then i = j.

Proof. Assume for a contradiction that there are i, j ∈ [[α]], i < j, such that ui = vj. From Property 1, it follows that,
ince there is no edge vui with v ∈

{
v1, . . . , vj−1

}
and no edge uiu with u ∈ {ui+1, . . . , uα}, there is no edge vu with

∈
{
v1, . . . , vj−1

}
and u ∈ {ui+1, . . . , uα}. Hence,

{
v1, . . . , vj−1, ui, . . . , uα

}
is an independent set of size at least α + 1, a

ontradiction. ◀

So Lemma 4 tells us that in a co-comparability graph G = (V , E), the position of a vertex v, which belongs to some
aximum independent set, is the same in every maximum independent set containing v. We denote by I ⊆ V the set of
ertices which are contained in some maximum independent set. For any v ∈ I, we then denote by pos(v) the position of
in every maximum independent set it belongs to. Thus, for a vertex v ∈ I, we have pos(v) = posI (v), for any maximum

ndependent set I containing v.
Lemma 4 allows us to partition the vertices in I ⊆ V into sets L1, . . . , Lα ⊆ I, where α = α(G), such that for any

∈ I we have v ∈ Lp, p ∈ [[α]] if and only if there exists an independent set
{
u1, . . . , up−1, up = v, up+1, . . . , uα

}
with

u1 ≺ · · · ≺ uα . In other words, Lp = {v ∈ I| pos(v) = p}, for p ∈ [[α]] (see also Fig. 2). These sets Lp satisfy the following
roperty.

roperty 5. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let Lp, for p ∈ [[α]], be as defined above.
hen, Lp is a clique.

roof. Assume for a contradiction that there exist u, v ∈ Lp with u ≺ v such that uv /∈ E. Let Ir be a right extension of v

f maximum size. Let Iℓ be a left extension of u of maximum size. Then v ≺ Ir and Iℓ ≺ u. From Property 1, we get that
ℓ ∪ {u, v} ∪ Ir is an independent set which has size (p − 1) + 2 + (α − p) = α + 1, a contradiction. ◀

roperty 6. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let u, v ∈ I with uv /∈ E. Then
os(u) < pos(v) if and only if u ≺ v.

roof. Suppose for a contradiction that there are u, v ∈ V with uv /∈ E, pos(u) < pos(v) and v ≺ u. Let Ivℓ be a maximum
eft extension of v and Iuℓ be a maximum left extension of u. From Observation 3 we know that Ivℓ is also a left extension
f u. Since pos(u) < pos(v) = |Ivℓ | + 1 ≤ |Iuℓ | + 1 = pos(u) we get a contradiction. ◀

Our algorithm that we will present in Section 4 relies on the sets Lp defined above. Thus, it is important to be able to
etermine those sets in a co-comparability graph. The following result shows that this can be done in polynomial time.

emma 7. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Then, the sets L1, . . . , Lα , where α = α(G),
an be found in polynomial time.

roof. First notice that it follows from Property 1 that if Iuℓ is a left extension of some vertex u ∈ V and Iur is a right
xtension of this same vertex u ∈ V , then Iuℓ ∪ {u} ∪ Iur is an independent set in G containing u. Furthermore, any

ndependent set containing u consists of a left extension of u, a right extension of u, and u itself. Thus, the size of a

310
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aximum independent set in G containing some vertex u can be obtained by determining the maximum left respectively
ight extension of u. Let us define the two functions leftext(·) and rightext(·) as follows: leftext(v), for v ∈ V , is the size
f a maximum left extension of v; and rightext(v), for v ∈ V , is the size of a maximum right extension of v. From the
bove, it follows that leftext(v) + rightext(v) + 1 corresponds to the size of a maximum independent set of G which

contains v. Furthermore, the value leftext(v) + 1 gives us the position of v in a maximum independent set I containing
v, i.e. posI (v) = leftext(v) + 1. We can also determine α, since α = maxv∈V (leftext(v) + rightext(v) + 1).

From the above, it follows that once we determined leftext(v) and rightext(v) for every vertex v ∈ V , we obtain the
sets L1, . . . , Lα , since

Li = {v ∈ V | leftext(v) + rightext(v) + 1 = α and leftext(v) + 1 = i}.

Thus, it remains to show how we can compute the functions leftext(·) and rightext(·). Herefore, we use the ordering
≺ of the vertices and we get that

leftext(v) = max
u∈V ,u≺v,uv /∈E

(leftext(u) + 1)

rightext(v) = max
u∈V ,v≺u,uv /∈E

(rightext(u) + 1)

Suppose V = {v1, . . . , vn} and v1 ≺ v2 ≺ · · · ≺ vn. Clearly, leftext(v1) = rightext(vn) = 0. By iterating through
the vertices in increasing order with respect to ≺, we can calculate the values of leftext(v), and similarly by iterating
in decreasing order we get rightext(v), for all vertices v ∈ V . Both functions can therefore clearly be computed for all
vertices in O(|V |

2) time. Hence we can find the partition in polynomial time. ◀

4. Transversals in co-comparability graphs

In this section, we present a polynomial-time algorithm to solve Transversal(α) in co-comparability graphs. Let
G = (V , E) be a co-comparability graph with a vertex ordering ≺, independence number α = α(G) and let d > 0 be
an integer. We will construct a directed graph G′

= (V ′, A′) such that (G′, k) is a Yes-instance of Vertex Cut if and only
if (G, d, k) is a Yes-instance of Transversal(α) for some integer k > 0. This equivalence will be shown in Theorem 16.
Since G′ can be constructed in polynomial time (see Theorem 16) and since we know that Vertex Cut can be solved in
polynomial time (see [10]), we obtain our result.

We first make an important observation.

Observation 8. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let S ⊆ V . Then S is a d-transversal of
G if and only if it contains at least one vertex from every max-extendable independent set of size α − d + 1 of G.

Observation 8 tells us that, in order to obtain a d-transversal in G, we must intersect all max-extendable independent
sets of size α−d+1 in at least one vertex. Therefore, in the following, we will construct a directed graph G′ with a source
s and a sink t , such that every s-t-path in G′ corresponds to a max-extendable independent set of size α − d + 1 in G.
This one-to-one correspondence will be proven in Lemma 13. An s-t-cut in G′ will then correspond to a d-transversal in
G (see Theorem 16).

Let us now describe the construction of G′
= (V ′, A′). Let I =

⋃
p∈[[α]]

Lp be the set of vertices contained in a maximum
independent set. The vertex set V ′ of G′ consists of d copies U1, . . . ,Ud of I and two additional vertices s, t , that is,
V ′

=
⋃

ℓ∈[[d]] Uℓ ∪ {s, t}. We denote by Lp,ℓ the set of vertices in Uℓ that correspond to vertices of Lp in G, for p ∈ [[α]]

and ℓ ∈ [[d]], and we say that ℓ is the level of the vertices in Uℓ, denoted by level(x) = ℓ for x ∈ Uℓ. Recall that pos(v),
for v ∈ I, is the position of v in every maximum independent set it belongs to in G. For simplicity, we will adopt this
same notion for all vertices in V ′

\ {s, t}, i.e. for every vertex x ∈ V ′
\ {s, t} that corresponds to some vertex v ∈ Lp, for

p ∈ [[α]], we will also use pos(x) and call it the position of x in order to actually refer to the position of v, the vertex that
x corresponds to in G. Furthermore, we set pos(s) = 0 and level(s) = 1 as well as pos(t) = α + 1 and level(t) = d, in
order to simplify the readability of our proofs.

Let x, y ∈ V ′
\ {s, t}, where x ∈ Lp,ℓ and y ∈ Lp′,ℓ′ , with p, p′

∈ [[α]] and ℓ, ℓ′
∈ [[d]]. Let u, v ∈ I, where x corresponds

to u and y corresponds to v. We add an arc (x, y), if {u, v} is max-extendable in G and p′
= p+ g + 1, ℓ′

= ℓ + g for some
integer g ≥ 0. Finally, for any vertex x ∈ Lp,ℓ, with p ∈ [[α]] and ℓ ∈ [[d]], we add an arc (s, x) if p = pos(s)+ g +1 = g +1,
ℓ = level(s)+g = g+1, for some integer g ≥ 0, and we add an arc (x, t) if pos(t) = α+1 = p+g+1, level(t) = d = ℓ+g
for some integer g ≥ 0.

We make the following observations which immediately follow from the definition of G′
= (V ′, A′).

Observation 9. Let G′
= (V ′, A′) be the directed graph constructed from a co-comparability graph G as described above. For

any arc (x, y) ∈ A′, we have

(a) pos(y) > pos(x);
(b) level(y) ≥ level(x);
(c) pos(y) − pos(x) − 1 = level(y) − level(x).
311
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Fig. 3. The graph G′ constructed from the graph G from Fig. 2 for d = 1. The level of all vertices is 1.

Fig. 4. The graph G′ constructed from the graph G from Fig. 2 for d = 2.

Figs. 3 and 4 show the graph G′ constructed from the graph G in Fig. 2 for d = 1 (Fig. 3) and d = 2 (Fig. 4).
Before we show the one-to-one correspondence between max-extendable independent sets of size α − d+ 1 in G and

-t-paths in G′, we present some useful properties.

roperty 10. Let P be an s-t-path in G′ with vertices s, x1, . . . , xh, t in that order. There exist exactly d − 1 distinct integers
in [[α]], say g1, . . . , gd−1, such that pos(xi) /∈ {g1, . . . , gd−1} for all i ∈ [[h]]. For any other integer g ∈ [[α]] \ {g1, . . . , gd−1},
there exists exactly one vertex x ∈ V (P) \ {s, t} such that pos(x) = g.

Proof. Let P be an s-t-path in G′ with vertices s, x1, . . . , xh, t in that order. Consider an arc (xi, xi+1) in P . Assume that
xi ∈ Lp,ℓ and xi+1 ∈ Lp′,ℓ′ , with p, p′

∈ [[α]] and ℓ, ℓ′
∈ [[d]]. From Observation 9(c), it follows that p′

= p + 1 + ℓ′
− ℓ and

by Observation 9(b), we know that ℓ′
− ℓ ≥ 0. Hence, we skip ℓ′

− ℓ positions between xi and xi+1, which will not be
used by any vertex in P , that is, there are ℓ′

− ℓ integers between p and p′ which do not correspond to any position of
some vertex in P . Since we start at level 1 (recall that level(s) = 1) and we end at level d (recall that level(t) = d), we
get that there are exactly d− 1 distinct integers in [[α]], say g1, . . . , gd−1, such that pos(xj) /∈ {g1, . . . , gd−1} for all j ∈ [[h]].
Furthermore, since pos(xj′ ) > pos(xj), for any j′ > j, with j, j′ ∈ [[h]] (see Observation 9(a)), it is obvious to see that for any
other integer g ∈ [[α]] \ {g1, . . . , gd−1}, there exists exactly one vertex x ∈ V (P) \ {s, t} such that pos(x) = g . ◀

The next property gives the exact number of vertices in any s-t-path in G′.

Property 11. Every s-t-path P in G′ contains α − d + 3 vertices.

Proof. From Property 10, we know that there are d−1 positions that do not correspond to any position of some vertex in
P and that all other positions do correspond each to a different position of some vertex in V (P) \ {s, t}. Since there are in
total α possible positions of which none corresponds to the positions of s and t (recall that pos(s) = 0 and pos(t) = α+1),
there are α − d + 1 vertices in V (P) \ {s, t}, and hence, P contains exactly α − d + 3 vertices. ◀

The following property immediately follows from the definition of the position of a vertex in I and Observation 9(a).

Property 12. Let I = {v1, . . . , vα−d+1} be a max-extendable independent set in G. There exist exactly d − 1 distinct integers
in [[α]], say g1, . . . , gd−1 such that pos(vi) /∈ {g1, . . . , gd−1} for all i ∈ [[α − d + 1]].

We are now ready to show the one-to-one correspondence between s-t-paths in G′ and max-extendable independents
sets of size α − d + 1 in G.

Lemma 13. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let α = α(G), d > 0 be an integer and
consider G′

= (V ′, A′), constructed as described above. Then, every max-extendable independent set of size α − d + 1 in G
corresponds to an s-t-path in G′ and vice versa.
312



F. Lucke and B. Ries Discrete Applied Mathematics 356 (2024) 307–321

s
o

P

Fig. 5. An extension of vi and vi+1 to a maximum independent set. The empty circles represent all vertices of the maximum extension J ′i , while the
et Ji ⊆ J ′i contains exactly the vertices whose corresponding vertices have positions between those of vi and vi+1 . We assume the vertices to be
rdered from left to right according to the ordering ≺.

roof. Let us first consider an s-t-path P = s, x1, x2, . . . , xh, t in G′. We know from Property 11 that this path consists of
exactly α − d+3 vertices, hence h = α − d+1. Let vi ∈ V be the vertex in G corresponding to xi ∈ V ′, for i ∈ [[α − d+1]].
Notice that by Observation 9(a), we have pos(v1) < pos(v2) < · · · < pos(vα−d+1).

Claim 13.1. {v1, . . . , vα−d+1} is an independent set in G.

Proof. By construction, if there is an arc (xi, xi+1) in G′, for i ∈ [[α − d]], then vi and vi+1 are necessarily non-adjacent.
Since pos(vi) < pos(vi+1), we have by Property 6 that vi ≺ vi+1. Thus, we obtain that vi ≺ vi+1 ≺ · · · ≺ vi+j. Now using
Property 1, we conclude that vi, vi+j are non-adjacent, for i, i + j ∈ [[α − d + 1]], j > 1, such that xi, xi+j ∈ V (P). Thus,
{v1, . . . , vα−d+1} is an independent set in G. ◁

Claim 13.2. The independent set {v1, . . . , vα−d+1} is max-extendable in G.

Proof. As mentioned before, by construction, we know that if there is an arc (xi, xi+1) in G′, then {vi, vi+1} is max-
extendable in G. Let now J ′i ⊆ V , for i ∈ [[α − d]], be a maximum extension of {vi, vi+1}. Let further Ji ={
w ∈ J ′i | pos(vi) < pos(w) < pos(vi+1)

}
(see Fig. 5). We also adapt this definition to the first vertex v1, and denote by

J ′0 a maximum extension of {v1} (recall that v1 ∈ I). We choose J0 =
{
w ∈ J ′0| pos(w) < pos(v1)

}
. Similarly, we denote by

J ′α−d+1 a maximum extension of {vα−d+1} and Jα−d+1 =
{
w ∈ J ′α−d+1| pos(vα−d+1) < pos(w)

}
(recall that vα−d+1 ∈ I). The

set
⋃α−d+1

h=0 Jh ∪ {v1, . . . , vα−d+1} is an independent set, since {vi, vi+1} ∪ Ji is an independent set, for i ∈ [[α − d+ 1]], and
we can combine them using Property 1. From the fact that a maximum extension of {vi, vi+1}, with i ∈ {1, . . . , α − d}, is
a maximum independent set I , it follows that for any p ∈ [[α]], there is a vertex in u ∈ I with pos(u) = p. Thus, we get
that |Ji| = pos(vi+1) − pos(vi) − 1, for i ∈ [[α − d]]. Further, we have |J0| = pos(v1) − 1 and |Jα−d+1| = α − pos(vα−d+1).
Thus, ⏐⏐⏐⏐ {v1, . . . , vα−d+1} ∪

α−d+1⋃
h=0

Jh

⏐⏐⏐⏐
= (α − d + 1) + (pos(v1) − 1) +

α−d∑
h=1

(
pos(vh+1) − pos(vh) − 1

)
+ (α − pos(vα−d+1))

= (α − d + 1) + α − (α − d) − 1 = α.

Hence, it follows that {v1, . . . , vα−d+1}∪
⋃α−d+1

h=0 Jh is a maximum independent set in G, which shows that {v1, . . . , vα−d+1}

is max-extendable. ◁

Let us now prove the converse, i.e. that a max-extendable independent set of size α − d + 1 in G corresponds to an
s-t-path in G′. Consider a max-extendable independent set I = {v1, . . . , vα−d+1} of size α − d + 1 in G. We may assume
that pos(v1) < pos(v2) < · · · < pos(vα−d+1).

Let g1, . . . , gd−1 be as in Property 12. For i ∈ [[α−d+1]], let xi ∈ V ′ be the vertex corresponding to vi, with xi ∈ Lpos(vi),ℓ,
where ℓ = | {gk | gk < pos(vi), k ∈ [[d − 1]]} | + 1. By Property 12, we know that 1 ≤ ℓ ≤ d, and since 1 ≤ pos(vi) ≤ α,
we get that xi exists. To show the existence of a path P with vertices s, x1, . . . , xα−d+1, t in that order, it remains to show
that the arcs (s, x1), (xi, xi+1), for i ∈ [[α − d]], and (xα−d+1, t) exist.

Claim 13.3. The arcs (s, x1), (xi, xi+1), for i ∈ [[α − d]], and (xα−d+1, t) exist in G′.

Proof. For the arc (s, x1), notice that | {gk | gk < pos(v1), k ∈ [[d − 1]]} | + 1 = pos(v1), and hence the arc exists
by definition. Let i ∈ [[α − d]]. Let ℓi = | {gk | gk < pos(vi), k ∈ [[d − 1]]} | + 1 be the level of xi and let ℓi+1 =

| {gk | gk < pos(vi+1), k ∈ [[d − 1]]} | + 1 be the level of xi+1, as defined above. Recall that by definition the arc (xi, xi+1)
exists, if pos(xi+1) = pos(xi)+g+1 and ℓi+1 = ℓi+g , for some g ≥ 0, and {vi, vi+1} is max-extendable. It follows from the
above that ℓi+1 −ℓi = | {gk | pos(vi) ≤ gk < pos(vi+1), k ∈ [[d − 1]]} |, that is, the number of positions between pos(vi) and
pos(vi+1) that are not used by any vertex in I , and hence we get pos(xi+1) = pos(xi)+ℓi+1−ℓi+1. Furthermore, {vi, vi+1} is
clearly max-extendable since both belong to I . We conclude that the arc (xi, xi+1) necessarily exists. If we consider xα−d+1,
we get that level(xα−d+1) = | {gk | gk < pos(vα−d+1), k ∈ [d − 1]} |+1 = d−1−(α−pos(vα−d+1))+1 = pos(vα−d+1)+d−α.
Hence, the arc (x , t) exists by definition. ◁
α−d+1
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It follows that P = s, x1, . . . , xα−d+1, t is a path in G′. This concludes the proof of our lemma. ◀

Let us show two more properties that we will need in our main theorem of the section.

Property 14. Let G be a co-comparability graph with vertex ordering ≺ and let G′ be the corresponding directed graph,
constructed as described above. Let I be a max-extendable independent set of G and let P be the corresponding s-t-path in G′.
Consider v ∈ I and its corresponding vertex x ∈ V (P). Then, posI (v) = pos(v) − level(x) + 1.

Proof. Let g1, . . . , gd−1 be as in Property 12. Recall from the proof of Lemma 13 that level(x) = |{gk | gk < pos(vi), k ∈

[[d − 1]]}| + 1. Hence, the result follows. ◀

Property 15. Let G be a co-comparability graph with vertex ordering ≺ and let G′ be the corresponding directed graph,
constructed as described above. Let I1, I2 be two max-extendable independent sets of size α − d+ 1 in G, and let P1, P2 be their
corresponding paths in G′. Let v ∈ I1 ∩ I2 such that the corresponding vertices x1 ∈ P1, x2 ∈ P2 are different. Assume without
loss of generality that level(x1) < level(x2). Then, posI1 (v) > posI2 (v).

Proof. Since, by Property 14, posI1 (v) = pos(v)− level(x1)+1 and posI2 (v) = pos(v)− level(x2)+1, and since we assume
that level(x1) < level(x2), it follows that posI1 (v) > posI2 (v). ◀

Theorem 16. Transversal(α) is polynomial-time solvable for co-comparability graphs.

Proof. Let G = (V , E) be a co-comparability graph and let (G, d, k) be an instance of Transversal(α). We construct the
graph G′

= (V ′, A′) as described above. We will show that (G, d, k) is a Yes-instance of Transversal(α) if and only if (G′, k)
is a Yes-instance of Vertex Cut. Let (G′, k) be a Yes-instance of Vertex Cut and let C be an s-t-cut of G′ of size at most k.
We want to prove that (G, d, k) is a Yes-instance of Transversal(α).

For every vertex in the cut C ⊆ V ′, we add the corresponding vertex in G to a set S. We assume for a contradiction that
there is an independent set I in G− S of size α − d+ 1 which is max-extendable in G. By Lemma 13, we know that there
is a path P from s to t in G′ representing I . Since I ⊆ V \ S, we get that P ∩ C = ∅ and hence, we can find an s-t-path in
G′

− C , a contradiction. Thus, such an independent set I does not exist, and so by Observation 8, we deduce that (G, d, k)
is a Yes-instance of Transversal(α).

Let now (G, d, k) be a Yes-instance of Transversal(α). We want to show that (G′, k) is a Yes-instance of Vertex Cut.
Let S ⊆ V , with |S| ≤ k, be a d-transversal of G. We may assume that S is minimal.

We iteratively construct a set C using Algorithm 1, and we will prove that C is an s-t-cut in G′ with |S| = |C |. For
each vertex in S, the algorithm chooses the corresponding vertex in G′ belonging to the lowest level such that there is
an s-t-path in G′

− C containing this vertex, and then adds it to C . We will find such a vertex for every vertex in S, since
otherwise S would not be minimal. Hence, it is clear that |S| = |C |.

Algorithm 1
Input: The graph G′ constructed from a co-comparability graph G,

a minimal d-transversal S in G.
Output: An s-t-cut C ⊆ V ′ with |S| = |C |.
2: Let S =

{
u1, . . . , u|S|

}
, ui ≺ uj for i < j, i, j ∈ [[|S|]].

Let C = ∅.
4: for i from 1 → |S| do

Let u = ui.
6: Let y1, . . . , yd ∈ V ′ be the vertices corresponding to u, sorted by increasing level.

for j from 1 → d do
8: if ∃ s-t-path in G′

− C containing yj then
C = C ∪ yj

0: break
else

2: continue
end if

4: end for
end for

To prove that C , which is constructed by applying Algorithm 1, is indeed an s-t-cut in G′, we assume for a contradiction
that there exists an s-t-path P1 in G′

− C . Let I1 ⊆ V be the max-extendable independent set in G of size α − d + 1
corresponding to P1 (I1 exists by Lemma 13). Let Ie1 ⊆ V be a maximum extension of I1 in G. Since S is a d-transversal of
G, we know that S ∩ I ̸= ∅. Let v ∈ S ∩ I , and if |S ∩ I | > 1, we choose the rightmost vertex according to ≺ in S ∩ I for
1 1 1 1
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Fig. 6. The different independent sets, considered in the proof. Note that the empty vertices are only part of the corresponding extended version
f the independent set (e.g. in Ie1 but not in I1), while the other vertices are contained in both sets.

v. Let yj ∈ V ′, for j ∈ [[d]], be the copy of v in P1. Since P1 is a path in G′
− C , we know that yj ̸∈ C . Hence, there is some

other copy of v in G′, say yi, i ∈ [[d]], such that Algorithm 1 added yi to C . Due to the procedure we use in Algorithm 1 to
hoose the vertices in C , we have i < j.
Since yi was added to C , there exists a path P2 in G′ containing yi. Let I2 be the max-extendable independent set of

ize α − d+ 1 in G corresponding to P2 (I2 exists by Lemma 13), and let Ie2 be a maximum extension of I2 in G. Let J1 ⊆ I1
be the set of the α − d + 1 − posI1 (v) rightmost vertices in I1, i.e. those vertices u in I1 such that pos(v) < pos(u) (see
Fig. 6(a)). We know that J1 ∩ S = ∅ by the choice of v. Let Je1 ⊇ J1 be the set of the α − pos(v) rightmost vertices in Ie1 ,
i.e. those vertices u in Ie1 such that v ≺ u (see Fig. 6(a)). Similarly, let J2 ⊆ I2 be the set of the first posI2 (v) − 1 vertices
in I2, i.e. those vertices u in I2 such that pos(u) < pos(v) (see Fig. 6(b)), and let Je2 ⊇ J2 be the set of the first pos(v) − 1
vertices in Ie2 , i.e. those vertices u in Ie2 such that pos(u) < pos(v) (see Fig. 6(b)). It then follows from Property 1 that
Je2 ∪ {v} ∪ Je1 is an independent set in G of size (α − pos(v)) + 1 + (pos(v) − 1) = α, i.e. a maximum independent set in G.
Thus, J2 ∪ J1 is a max-extendable independent set in G. It follows from Property 15, that posI1 (v) < posI2 (v). We conclude
that |J2 ∪ J1| = (posI2 (v) − 1) + (α − d + 1 − posI1 (v)) > α − d. Hence, J2 ∪ J1 either is a max-extendable independent set
in G − S of size at least α − d + 1, or J2 ∩ S ̸= ∅. In the first case, we directly get a contradiction to our assumption that
S is a d-transversal in G. So, we may assume that J2 ∩ S ̸= ∅.

Let w ∈ J2∩S, and if |J2 ∩ S| > 1, we take the rightmost vertex w in J2∩S with respect to ≺ such that pos(w) < pos(v).
Let yh, h ∈ [[d]], be the vertex in P2 corresponding to w. Then, yh ̸∈ C , since otherwise Algorithm 1 would not have added
yi to C . Thus, as before, there exists some vertex yg , g ∈ [[d]], with g < h, such that yg corresponds to w and yg ∈ C .
Therefore, there exists a path P3 in G′ containing yg . Let I3 be the max-extendable independent set of size α − d + 1 in
G corresponding to P3, and let Ie3 be its extension (see Fig. 6(d)). We define J3 =

{
u ∈ I3| posI3 (u) < posI3 (w)

}
, as well as

Je3 = {u ∈ I3| pos(u) < pos(w)} ⊇ J3. Furthermore, we consider the set J ′2 =
{
u ∈ I2| posI2 (w) < posI2 (u) < posI2 (v)

}
as

well as Je
′

2 = {u ∈ I2| pos(w) < pos(u) < pos(v)} ⊇ J ′2 (see Fig. 6(c)). Thus, J3 ∪ J ′2 ∪ J1 is a subset of Je3 ∪ {w} ∪ Je
′

2 ∪ {v} ∪ Je1 ,
which by Property 1 is an independent set in G of size (pos(w)−1)+1+ (pos(v)−pos(w)−1)+1+ (α −pos(v)) = α, i.e.
a maximum independent set. Thus, J3 ∪ J ′2 ∪ J1 is a max-extendable independent set in G. It follows from Property 15, that
posI2 (w) < posI3 (w). Since in addition posI1 (v) < posI2 (v) (see above), we conclude that |J3 ∪ J ′2 ∪ J1| = (posI3 (w) − 1) +

(posI2 (v)−posI2 (w)−1)+ (α−d+1−posI1 (v)) > α−d. Hence, we obtain again that either J3 ∪ J ′2 ∪ J1 is a max-extendable
independent set in G − S of size at least α − d + 1, or that J3 ∩ S ̸= ∅. As before, the first case gives us a contradiction to
our assumption that S is a d-transversal in G. So, we may assume that J3 ∩ S ̸= ∅.

By repeatedly using these arguments, we can always find a new vertex in S. But since S is finite, this case cannot
always occur. Hence, we will necessarily get a contradiction and thus, there is no s-t-path P in G′

− C . So we conclude
that C is an s-t-cut in G′.

Let us now consider the complexity of our algorithm. From [24], we know that for a graph with n vertices, we can
3 ′ ′
solve Vertex Cut in O(n ). Since the graph G has O(d|V |) vertices, computing a Vertex Cut in G can be done in time
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(d3|V |
3). We still need to consider the time we need to construct G′. Using Lemma 7, we know that we can find the

artition of I into sets Lp, for p ∈ [[d]], in time O(|V |
2). For every pair of vertices in G′, we can check in O(|V |) time if we

introduce an arc between them in G′. Hence, G′ can be constructed in O(d2|V |
3). We conclude that Transversal(α) can

e solved in time O(d3|V |
3). ◀

. More properties of independent sets in co-comparability graphs

To solve Deletion Blocker(α), we will use an approach similar to the one in Section 4. This requires an extension of
he structural results from Section 3 for independent sets that are not necessarily maximum. We sometimes omit proofs
ince they are very similar to the ones we presented in the previous sections.
Recall that Lemma 4 allowed us to partition the vertices in a maximum independent set by using their position. The

ame property holds for all vertices with respect to the largest independent set in which they are contained.

emma 17. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let v ∈ V and let I1, I2 be two independent
ets of G such that both contain v and they are maximum among the independent sets of G containing v. Let β = |I1| = |I2|.
et I1 =

{
u1, . . . , ui−1, v = ui, ui+1, . . . , uβ

}
, with u1 ≺ · · · ≺ uβ , and I2 =

{
v1, . . . , vj−1, v = vj, vj+1, . . . , vβ

}
, with

1 ≺ · · · ≺ vβ . Then i = j.

roof. Suppose that i < j, then similar to the proof of Lemma 4, we can find an independent set {v1, . . . , vj−1, v, ui+1,
. . , uβ} which has size β + 1 and contains v, a contradiction. ◀

efinition 18. Let G = (V , E) be a co-comparability graph with α = α(G). Let L1, . . . , Lα be as in Lemma 7. Let Iβ be the
et of vertices that occur in an independent set of size β , but not of size β + 1, β ∈ [[α]]. We define Lp,β , p ∈ [[β]], as the
et of vertices v ∈ Iβ such that for an independent set I of size β containing v ∈ V we have that posI (v) = p. From now
n, we refer to the sets Lp from Lemma 7 as Lp,α . We say that pos(v) = p.

Note that we defined the position of a vertex in two different ways. We will consider in the following both the relative
osition posI of a vertex, which depends on the independent set I and the absolute position pos of a vertex, which
s independent of any specific independent set. Fig. 7 gives an example of a co-comparability graph. We can see the
ssignment of the vertices in Iα and Iα−1 to the sets Lp,β . The set L3,α−1 is empty.

bservation 19. Let G = (V , E) be a co-comparability graph and let v ∈ Lp,β , β ∈ [[α]], p ∈ [[β]]. Consider a maximum
eft extension Ivℓ of v and a maximum right extension Ivr of v. Then we have that |Ivℓ | = p − 1 and |Ivr | = β − |Ivℓ | − 1 =

− (p − 1) − 1 = β − p.

From Property 5 we know that each of the sets Lp,α for p ∈ [[α]] is a clique. We will generalise this to the sets Lp,β , for
∈ [[α]].

roperty 20. Let G = (V , E) be a co-comparability graph with α = α(G). Let Lp,β , with β ∈ [[α]], p ∈ [[β]] be as in
efinition 18. Let v ∈ Lp,β . Then, v is adjacent to all vertices in⋃

j∈{β,...,α},i∈{0,...,j−β}

Lp+i,j.

roof. Let v ∈ Lp,β . Assume there exists u ∈ Lq,γ , for γ ∈ {β, . . . , α}, q ∈ {p, . . . , p + γ − β} such that uv /∈ E. We assume
ow that v ≺ u. The case u ≺ v can be handled in a similar way. Let Ivℓ be a maximum left extension of v and let Iur be a

maximum right extension of u. From Observation 3 we obtain that Ivℓ is a left extension of u and Iur is a right extension of
v. This gives us Ivℓ ≺ v ≺ u ≺ Iur and thus, by Property 1, I = Ivℓ ∪ {u, v} ∪ Iur is an independent set. Since u ∈ Lq,γ we have,
y Observation 19, that |Iur | = γ − q ≥ γ − (p + γ − β) = β − p. Furthermore, Observation 19 tells us that |Ivℓ | = p − 1,
ince v ∈ Lp,β . Thus, |I| ≥ p − 1 + 2 + β − p = β + 1, a contradiction to v ∈ Iβ . ◀

We can see in Fig. 7 that vertex v ∈ L1,α−1 is complete to L1,α and L2,α .

emma 21. Let G = (V , E) be a co-comparability graph with vertex ordering ≺ and α = α(G). Let u, v ∈ V , uv /∈ E and
os(u) < pos(v). Then u ≺ v.

roof. Let Ivℓ be a maximum left extension of v and Iur be a maximum right extension of u. Suppose for a contradiction
hat v ≺ u. By definition of a left extension (resp. right extension) we get that Ivℓ ≺ v (resp. u ≺ Iur ). Since v ≺ u it
ollows from Property 1 that Ivℓ ≺ v ≺ u ≺ Iur . Further, since Ivℓ ∪ v and u ∪ Iur are both independent sets and uv /∈ E the
et I = Ivℓ ∪ v ∪ u ∪ Iur is an independent set. Let βu be the size of a maximum independent set in G containing u. From
bservation 19 we get that

|I| = |Ivℓ | + 2 + |Iur | = pos(v) − 1 + 2 + βu − pos(u) = pos(v) − pos(u) + 1 + βu ≥ βu + 1

contradiction to β being the size of a maximum independent set containing u. Hence, u ≺ v. ◀
u
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Fig. 7. The figure shows a co-comparability graph. The blue vertices are those in Iα , the red ones those in Iα−1 . The black vertices are contained
in neither Iα nor in Iα−1 . Note that in this example α = α(G) = 4. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Lemma 22. Let G = (V , E) be a co-comparability graph with vertex ordering ≺ and α = α(G). Let u, v ∈ V , uv /∈ E and
u ≺ v. Then pos(u) < pos(v).

Proof. Suppose for a contradiction that pos(u) ≥ pos(v). Consider first the case where pos(u) = pos(v) = p, for some
∈ [[α]]. There are β, β ′

∈ {p, . . . , α} such that u ∈ Lp,β and v ∈ Lp,β ′ . Without loss of generality we may assume that
< β ′. Then from Property 20 it follows that uv ∈ E, a contradiction. Thus, pos(u) > pos(v). Further, Lemma 21 tells us

hat v ≺ u, a contradiction. ◀

emma 23. The partition of V into sets Lp,β can be found in O(|V |
2).

roof. To see that we can find this partition in polynomial time, recall the proof of Lemma 7. We defined leftext(v)
espectively rightext(v) as the size of a left respectively right extension of v of maximum size for any vertex v ∈ V .
e showed that we can calculate both functions in O(|V |

2). From Property 1, we know that for a vertex v ∈ V , we can
ombine every left extension Iℓ of v and every right extension Ir of v together with v to an independent set Iℓ ∪ {v} ∪ Ir .
onsider a maximum independent set containing v. This consists of v together with a maximum left extension and a
aximum right extension of v. Thus, for v ∈ V we can conclude that it is contained in Lp,β , where p = leftext(v)+ 1 and
= leftext(v) + 1 + rightext(v). Hence, after precomputing leftext(v) and rightext(v) for all v ∈ V as described above,
e can find the partition in O(|V |) time and we get a total running time of O(|V |

2). ◀

. Deletion blocker in co-comparability graphs

In this section, we will show that Deletion Blocker(α) can be solved in polynomial time in co-comparability graphs.
et G = (V , E) be a co-comparability graph with vertex ordering ≺, α = α(G), and d > 0 be an integer. We will construct
directed graph G′

= (V ′, A′) such that (G′, k) is a Yes-instance of Vertex Cut if and only if (G, d, k) is a Yes-instance
f Deletion Blocker(α), for some integer k > 0. The construction is similar to the one in Section 4. We will show the
quivalence between the two instances in Theorem 31. We can make an observation similar to Observation 8.

bservation 24. Let G = (V , E) be a co-comparability graph with a vertex ordering ≺. Let S ⊆ V . S is a d-deletion blocker of
if and only if it contains at least one vertex from every independent set of size α − d + 1 of G.

By Observation 24 it suffices to consider independent sets of size α − d + 1. Thus, in the following, we construct a
irected graph G′ with source s and sink t , such that every s-t-path in G′ corresponds to an independent set of size α−d+1
n G. The one-to-one correspondence will be proven in Lemma 28. An s-t-cut will then correspond to a d-deletion blocker
in G (see Theorem 31).

Let us now describe the construction of G′
= (V ′, A′). Recall that Iβ =

⋃
p∈[[β]]

Lp,β is the set of vertices which are
contained in an independent set of size β but not of size β + 1, for β ∈ [[α]]. The vertex set V ′ of G′ consists of d copies
1,β , . . . ,Ud,β of Iβ , for all β ∈ {α − d + 1, . . . , α}, and two additional vertices s, t . That is

V ′
=

⋃
β∈{α−d+1,...,α},ℓ∈[[d]]

Uℓ,β ∪ {s, t} .

We denote by Lp,ℓ,β the set Lp,β in Uℓ,β , for p ∈ [[α]], ℓ ∈ [[d]], and β ∈ {α − d + 1, . . . , α}. We say that ℓ is the level of
the vertices in Uℓ,β , denoted by level(x) = ℓ for x ∈ Uℓ,β . For simplicity, we adopt the notion of positions for all vertices
in V ′

\ {s, t}, that is, for every vertex x ∈ V ′
\ {s, t} that corresponds to some vertex v ∈ Lp, for p ∈ [[α]], we will also use

pos(x) in order to actually refer to the position of v, the vertex that x corresponds to in G. Furthermore, we set pos(s) = 0
and level(s) = 1 and for t we have pos(t) = α + 1 and level(t) = d.

Let x, y ∈ V ′
\ {s, t}, where x ∈ Lp,ℓ,β and y ∈ Lp′,ℓ′,β ′ , with p, p′

∈ [[α]], ℓ, ℓ′
∈ [[d]], and β, β ′

∈ {α − d + 1, . . . , α}. Let
u, v ∈ V , where x corresponds to u and y corresponds to v. We add an arc (x, y) if uv /∈ E and p′

= p + g + 1, ℓ′
= ℓ + g
317
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Fig. 8. The graph G′ corresponding to the graph G from Fig. 7 for d = 1.

Fig. 9. The graph G′ corresponding to the graph G from Fig. 7 for d = 2.

for some g ≥ 0. Similar to the construction in Section 4, we add an arc (s, y) if p′
= g + 1, ℓ′

= g + 1, for some g ≥ 0,
and we add an arc (x, t) if pos(t) = p + g + 1, level(t) = ℓ + g , for some g ≥ 0. We can see that Observation 9 holds for
this construction as well.

Figs. 8 and 9 give examples for the graph G′ constructed from the graph in Fig. 7 for d = 1 and d = 2. Note that some
ets Lp,ℓ,β in Fig. 9 are not contained in any s-t-path and thus could be removed from the graph. More such sets appear
when d > 2. We kept them to make the definitions and proofs easier.

We give three properties similar to Properties 10–12 which will help us to prove the one-to-one correspondence
between paths in G′ and independent sets in G, which we show in Lemma 28. We omit the proofs due to their similarity
to the proofs of Properties 10–12. Note that Property 25 follows from the proof of Property 10 since β has no influence
n whether an arc exists or not.

roperty 25. Let P = s, x1, . . . , xh, t be an s-t-path in G′. There exist exactly d− 1 distinct integers in [[α]], say g1, . . . , gd−1,
uch that pos(xi) /∈ {g1, . . . , gd−1} for all i ∈ [[h]]. For any other integer g ∈ [[α]] \ {g1, . . . , gd−1}, there exists exactly one
ertex x ∈ P − {s, t} such that pos(x) = g.

Property 26 follows from the proof of Property 11 by applying Property 25 instead of Property 10.

roperty 26. Every s-t-path P in G′ has α − d + 3 vertices.

roperty 27. Let I = {v1, . . . , vα−d+1} be an independent set in G. There exist exactly d − 1 distinct integers in [[α]], say
g1, . . . , gd−1 such that pos(vi) /∈ {g1, . . . , gd−1} for all i ∈ [[α − d + 1]].

Using Properties 25–27 we can now prove the one-to-one correspondence between s-t-paths in G′ and independent
sets of size α − d + 1 in G.

Lemma 28. Let G = (V , E) be a co-comparability graph, α = α(G), d > 0 an integer, and G′ constructed as above. Every
independent set of size α − d + 1 in G corresponds to an s-t-path in G′ and vice versa.

Proof. We first consider an s-t-path P = s, x1, x2, . . . , xh, t in G′. We know from Property 26 that this path consists of
exactly α−d+3 vertices, hence h = α−d+1. Let v , . . . , v be the vertices in G corresponding to x , x , . . . , x .
1 α−d+1 1 2 α−d+1
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otice that for any two sets Lp,ℓ,β and Lp′,ℓ′,β ′ , there exists an arc from xi ∈ Lp,ℓ,β to xj ∈ Lp′,ℓ′,β ′ in G′ only if p < p′, ℓ ≤ ℓ′.
hus, pos(v1) = pos(x1) < · · · < pos(xα−d+1) = pos(vα−d+1).

Claim 28.1. {v1, . . . , vα−d+1} is an independent set in G.

Proof. The proof to this claim can be obtained by replacing Property 6 by Lemma 21 in the proof of Claim 13.1. ◁

We will now prove the converse, that is, we show that an independent set of size α − d + 1 in G corresponds to
an s-t-path in G′. Let I = {v1, . . . , vα−d+1} be an independent set of size α − d + 1 in G. We assume that we have
v1 ≺ v2 ≺ · · · ≺ vα−d+1. From Lemma 22, it follows that pos(v1) < pos(v2) < · · · < pos(vα−d+1).

Let g1, . . . , gd−1 be as in Property 27. For i ∈ [[α − d + 1]], let xi ∈ V ′ be the copy of vi in Lpos(vi),ℓ,β , where
ℓ = | {gk | gk < pos(vi), k ∈ [[d − 1]]} | + 1 and β ∈ {α − d + 1, . . . , α} such that vi ∈ Iβ . We see that xi exists, since
ℓ ≤ d.

To get the existence of a path P = s, x1, . . . , xα−d+1, t , it remains to show that the arcs (s, x1), (xi, xi+1), for i ∈ [[α −d]],
and (xα−d+1, t) exist.

Claim 28.2. The arcs (s, x1), (xi, xi+1), for i ∈ [[α − d]], and (xα−d+1, t) exist.

Proof. This proof is the same as the proof of Claim 13.3. ◁

It follows that P = s, x1, . . . , xα−d+1, t is a path in G′. This concludes the proof of the lemma. ◀

Recall that pos(v) denotes the position of v in a maximum independent set containing v, while posI (v) denotes the
position of v in a specific, not necessarily maximum independent set I . To prove our second main result we need two
more properties.

Property 29. Let G be a co-comparability graph with vertex ordering ≺ and let G′ be the corresponding directed graph,
constructed as described above. Let I be an independent set of size α − d + 1 of G and let P be the corresponding s-t-path in
G′. Consider v ∈ I and its corresponding vertex x ∈ V (P). Then, posI (v) = pos(v) − level(x) + 1.

Proof. Let g1, . . . , gd−1 be as in Property 27. Recall from the proof of Lemma 28 that level(x) = |{gk | gk < pos(x), k ∈

[[d − 1]]}| + 1. Hence, the result follows. ◀

Property 30. Let G be a co-comparability graph with vertex ordering ≺, G′ as constructed above. Let I1, I2 be independent sets
of size α − d+ 1 in G and let P1, P2 be their corresponding paths in G′. Suppose there is v ∈ I1 ∩ I2 such that the corresponding
vertices x1 ∈ P1, x2 ∈ P2 are different. Assume without loss of generality that level(x1) < level(x2). Then, posI1 (v) > posI2 (v).

Proof. Since, by Property 29, posI1 (v) = pos(v)− level(x1)+1 and posI2 (v) = pos(v)− level(x2)+1, and since we assume
that level(x1) < level(x2), it follows that posI1 (v) > posI2 (v). ◀

Theorem 31. Deletion Blocker(α) is polynomial-time solvable for co-comparability graphs.

Proof. Let G = (V , E) be a co-comparability graph and let (G, d, k) be an instance of Deletion Blocker(α). We construct
the graph G′

= (V ′, A′) as described above. We will show that (G, d, k) is a Yes-instance of Deletion Blocker(α) if and
only if (G′, k) is a Yes-instance of Vertex Cut.

Let (G′, k) be a Yes-instance of Vertex Cut and let C be an s-t-cut of G′ of size at most k. We want to prove that (G, d, k)
is a Yes-instance of Deletion Blocker(α).

For every vertex in the cut C ⊆ V ′, we add the corresponding vertex in G to a set S. We assume for a contradiction
that there is an independent set I in G − S of size α − d + 1. By Lemma 28, we know that there is an s-t-path P in G′

representing I . Since I ⊆ V \ S, we get that P ∩ C = ∅ and hence, we can find an s-t-path in G′
− C , a contradiction. Thus,

such an independent set I does not exist, and so by Observation 24, we deduce that (G, d, k) is a Yes-instance of Deletion
Blocker(α).

Let now (G, d, k) be a Yes-instance of Deletion Blocker(α). We want to show that (G′, k) is a Yes-instance of Vertex
Cut. Let S ⊆ V with |S| ≤ k be such a d-deletion blocker of G. We may assume that S is minimal.

We iteratively construct a set C using again Algorithm 1, with the difference that we get as input the graph G′ and
d-blocker S in G instead of a d-transversal. We will prove that C is an s-t-cut in G′ with |S| = |C |. For each vertex in S, the
algorithm chooses the corresponding vertex in G′ belonging to the lowest level such that there is an s-t-path in G′

− C
containing this vertex and then adds it to C . We will find such a vertex for every vertex in S, since otherwise S would
not be minimal. Hence, it is clear that |S| = |C |.

To prove that C , which is constructed by application of Algorithm 1, is indeed an s-t-cut in G′, we assume for a
contradiction that there exists an s-t-path P1 in G′

− C . Let I1 ⊆ V be the independent set in G corresponding to P1,
which exists by Lemma 28. Since S is a d-deletion blocker of G, we know that S ∩ I ̸= ∅. Let v ∈ S ∩ I and if |S ∩ I | > 1,
1 1 1
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Fig. 10. The different independent sets considered in the proof.

we choose the rightmost vertex according to ≺ in S ∩ I1 for v. Let yj ∈ V ′, j ∈ [[d]], be the copy of v in P1. Since P1 is a
ath in G′

− C , we know that yj ̸∈ C . Hence, there is some other copy of v, say yi, i ∈ [[d]], such that Algorithm 1 added
i to C . Due to the procedure we used in Algorithm 1 to choose the vertices in C , we have i < j.
Since yi was added to C , there exists a path P2 in G′ containing yi. Let I2 be the independent set in G corresponding

o P2, which exists by Lemma 28. From Property 30 we know that posI1 (v) < posI2 (v). Let J1 ⊆ I1 be the set of the
− d + 1 − posI1 (v) rightmost vertices in I1, i.e. those vertices u in I1 such that v ≺ u (see Fig. 10(a)). We know that

1∩S = ∅ by the choice of v. Let J2 be the set of the posI2 (v)−1 leftmost vertices from I2 (see Fig. 10(a)), i.e. those vertices
in I2 with u ≺ v. Since J2 ≺ v ≺ J1, it follows from Property 1 that J2 ∪ J1 is an independent set. Since posI1 (v) < posI2 (v),
e get that |J2 ∪ J1| ≥ α −d+1. Hence, J2 ∪ J1 either is an independent set of size at least α −d+1 in G− S or J2 ∩ S ̸= ∅.

n the first case, we directly get a contradiction to our assumption that S is a d-deletion blocker in G. So, we may assume
hat J2 ∩ S ̸= ∅.

Let w ∈ J2 ∩ S, and if |J2 ∩ S| > 1, we take the rightmost vertex w in J2 ∩ S with respect to ≺ such that w ≺ v. Let
h, h ∈ [[d]] be the vertex in P2 corresponding to w. Then yh ̸∈ C , since otherwise Algorithm 1 would not have added
i to C . Thus, as before, there exists some vertex yg , g ∈ [[d]], with g < h, such that yg corresponds to w and yg ∈ C .
herefore, there exists an s-t-path P3 in G′ containing yg with corresponding independent set I3. I3 contains more vertices
o the left of w than I2, since by Property 30 we have that posI2 (w) < posI3 (w) (see Fig. 10(b)). Remember that J2 ∪ J1
s an independent set. We consider the set J ′2 =

{
u ∈ I2| posI2 (w) < posI2 (u) < posI2 (v)

}
= {u ∈ I2|w ≺ u ≺ v} which is a

ubset of the set J2. Thus, J ′2 ∪ J1 is still an independent set. We define a new set J3 =
{
u ∈ I3| posI3 (u) < posI3 (w)

}
⊆ I3,

which is an independent set, since I3 is an independent set. From the fact that J3, respectively J ′2∪ J1, contains only vertices
on the left, respectively right, of w and that both are independent to w we get that J3 ∪ J ′2 ∪ J1 is an independent set. Since
posI1 (v) < posI2 (v) and posI2 (w) < posI3 (w), we get that |J3 ∪ J ′2 ∪ J1| ≥ α − d+ 1. Hence, in G− S we get again either an
independent set J3 ∪ J ′2 ∪ J1 of size at least α − d + 1 or J3 ∩ S ̸= ∅.

By repeatedly using these arguments, we can always find a new vertex in S. But since S is finite, this case cannot
lways occur. Hence, we will necessarily get a contradiction and thus, there is no s-t-path P in G′

− C . So we conclude
hat C is an s-t-cut in G′.

Let us now consider the complexity of our algorithm. From [24] we know that for a graph with n vertices we can solve
Vertex Cut in O(n3). Since the graph G′ has O(d|V |) vertices, computing a Vertex Cut in G′ can be done in time O(d3|V |

3).
e still need to consider the time to construct G′. Using Lemma 23, we know that we can find the partition of I into sets

p,β in O(|V |
2). For every pair of vertices in G′, we can check in O(|V |) time if we introduce an arc between them in G′.

ence, G′ can be constructed in O(d2|V |
3). We conclude that Deletion Blocker(α) can be solved in time O(d3|V |

3). ◀

. Conclusion

In this paper, we showed that Deletion Blocker(α) and Transversal(α) are polynomial-time solvable in the class of
o-comparability graphs by reducing them to the well-known Vertex Cut problem. This generalises results of [7,15]. We
elieve that our approach (reduction to the Vertex Cut problem) can also be used to solve the weighted version of our
roblems in polynomial time, i.e., where we consider maximum weighted independent sets. The same holds for Deletion
locker(γ ) and Transversal(γ ), i.e., the blocker and the transversal problems with respect to minimum dominating sets.
e leave this as open questions.
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